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Introduction
• Exponential Smoothing methods performed very well in 

many competitions:

– M-Competitions in 1982 and 2000,

– Competition on telecommunication data in 1998 and 2008,

– Tourism forecasting competition in 2011.

• In practice forecasters usually use:

– SES for the level time series,

– Holt’s method for trend time series,

– Holt-Winters method for a trend-seasonal data.



Introduction
• Holt’s method is not performing consistently. Examples:

– M-Competitions;

– Taylor, 2008;

– Gardner & Diaz-Saiz, 2008;

– Acar & Gardner, 2012.

• Holt’s method is still very popular in publications:

– Gelper et. al, 2010;

– Maia & de Carvalho, 2011.



Introduction
• Several modifications for different types of trends were 

proposed over the years:

– Multiplicative trend (Pegels, 1969);

– Damped trend (Gardner & McKenzie, 1985);

– Damped multiplicative trend (Taylor, 2003);

– Prior data transformation using cross-validation (Bermudez et. 
al., 2009).

• Model selection procedure based on IC is usually used.



Introduction
• But the trend is unobservable and arbitrary!

DGP: ETS(A,N,N)



Reminder

• y
t
 is the real number, actual value,

• y
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+ip
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Remark
• The fact that imaginary numbers has hitherto been 

surrounded by mysterious obscurity, is to be attributed 
largely to an ill adapted notation.

• If “+1”, “-1”, and “√-1” had been called “direct”, “inverse” 
and “lateral” units, instead of “positive”, “negative” and 
“imaginary”, such an obscurity would have been out of the 
question.

Carl Friedrich Gauss



New approach
• We propose a different approach to time series modelling.

• where p
t
 is information potential

• Instead of:

• forecasting model now has a form:

y t+i pt

y t+i pt= f ( y t−1+i p t−1 , y t−2+i p t− 2 , ... , x1 , x2, ...)+ε t+i ξt

y t= f ( y t−1 , y t−2 ,... , x1 , x2, ...)+εt



Theoretical framework
• Simple exponential smoothing:

• Principle of CES: smooth level and combine it with 
information potential estimate.

• Basic form of CES:

ttt yy ˆ ststt yy   ˆ tt y  ,..., ,2,1 ttt xxf
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ŷ t+i p̂t=(α0+iα1 ) ( y t−1+i ςt−1 )+(1−α0+i−iα1 ) ( ŷ t−1+i p̂ t−1 )



Theoretical framework

• Complex variables -> system of real variables:

• Final forecast of CES consists of two parts:

– smoothed level,

– information potential part.

ŷ t+i p̂t=(α0+iα1 ) ( y t−1+i ςt−1 )+(1−α0+i−iα1 ) ( ŷ t−1+i p̂ t−1 )

{ ŷ t=(α0 y t−1+ (1−α0 ) ŷ t−1 )−(α1ς t−1+(1−α1) p̂ t−1 )
p̂ t=(α0ς t−1+(1−α0) p̂ t−1 )+(α1 y t−1+(1−α1 ) ŷ t−1)



State-space form
• Any exponential smoothing method has an underlying 

statistical model.

• State-space model with Single Source of Error.

• Every time series consists of components:
– level,

– trend,

– seasonality,

– error.



State-space form
• Any time series model consists of:

– transition equation: x t=F x t−1+gε t εt∼N (0,σ2
)



State-space form
• Any time series model consists of:

– measurement equation: y t=w' x t−1+ε t



State-space form
• State-space model with Single Source of Error:

– measurement equation:

– transition equation:

y t=w' x t−1+ε t

x t=F x t−1+gε t



State-space form
• State-space form of CES:

– measurement equation:

– transition equation:

y t=l t−1+ε t

(l tc t)=(1−(1−α1)

1 1−α0
)( l t−1ct−1)+(

−α1
α0)ς t+(

α0
α1)ε t



State-space form
• State-space form:

• Likelihood function:

• Maximizing it is equivalent to minimization of SSE:

f (α0+iα1,σ
2
∣y)=( 1

σ√2 π )
T

exp(−12∑t=1
T

(
ε t
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y t=l t−1+εt

( ltc t)=(1−(1−α1)
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Time series simulation



• Series N2692 from M3
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Example. Trended series



• ETS(M,A,N)
Forecasts from ETS(M,A,N)
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• CES• CES

Example. Trended series

α0+ iα1=2.00056+1.00364 i



• CES

Example. Trended series



• Series N1661 in M3
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• ETS(M,N,N)
Forecasts from ETS(M,N,N)
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• CES

Example. Stationary series

α0+ iα1=0.99999+1.00034 i



• CES

Example. Stationary series



Empirical results: setup
• M3-Competition data. 3003 time series.
• Rolling origin.
• Automated ETS was used to split data into categories:

– level non-seasonal,

– level seasonal,

– trend non-seasonal,

– trend seasonal.



Empirical results: setup
• M3-Competition data. 3003 time series.
• Rolling origin.
• Automated ETS was used to split data into categories.

Series 
type

Number of series Overall
Forecasting 
horizon

Rolling 
origin 
horizon

Level 
series

Trend 
series

year 255 390 645 6 12

quart 306 450 756 8 16

month 686 742 1428 18 24

other 61 113 174 8 16

Overall 1308 1695 3003



1. Naive (Naive),

2. Simple exponential smoothing (SES),

3. Holt’s additive trend (AAN),

4. Pegels’ multiplicative trend (MMN),

5. State-space ETS with AICc model selection (ZZN),

6. Gardner’s Damped trend (AAdN),

7. Taylor’s Damped multiplicative trend (MMdN),

8. Theta using Hyndman & Billah, 2003 (Theta),

9. Hyndman & Khandakar 2008 Auto ARIMA (ARIMA),

10.Complex exponential smoothing (CES).

Empirical results: competitors



Empirical results
• MASE was calculated for each of the horizons from each 

of the origins,
• Nemenyi test was conducted to compare methods for 

each of the series type.
• General results for CES:

– at least as good as SES on level series,

– outperforms MMN and AAN on level series,

– at least as good as MMN and AAN on trend series,

– outperforms all the methods on monthly trend series.

Ú



Empirical results. Nemenyi test



Empirical results
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Conclusions
• CES

– is flexible,

– has an underlying statistical model,

– is able to identify trends and levels,

– does it better than Holt and Pegels,

– is at least as good as SES,

– outperforms all the other methods on monthly data,

– is more accurate on long-term horizons.



Thank you!

Ivan Svetunkov,
email: i.svetunkov@lancaster.ac.uk

mailto:i.svetunkov@lancaster.ac.uk
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