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Introduction

* Exponential Smoothing methods performed very well in
many competitions:

-  M-Competitions in 1982 and 2000,
— Competition on telecommunication data in 1998 and 2008,

— Tourism forecasting competition in 2011.

* In practice forecasters usually use:

— SES for the level time series,
- Holt’'s method for trend time series,

- Holt-Winters method for a trend-seasonal data.
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Introduction

* Holt's method is not performing consistently. Examples:
- M-Competitions;
- Taylor, 2008;
- Gardner & Diaz-Saiz, 2008;
- Acar & Gardner, 2012.

* Holt's method is still very popular in publications:

- Gelper et. al, 2010;
- Maia & de Carvalho, 2011.

Lancaster Centre for
Forecasting

www.forecasting-centre.com




Introduction

* Several modifications for different types of trends were
proposed over the years:

— Multiplicative trend (Pegels, 1969);
- Damped trend (Gardner & McKenzie, 1985);
- Damped multiplicative trend (Taylor, 2003);

— Prior data transformation using cross-validation (Bermudez et.
al., 2009).

* Model selection procedure based on IC is usually used.
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Introduction

But the trend is unobservable and arbitrary!

- DGP: ETS(AN,N)
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Reminder

- y,is the real number, actual value,

| o >
0 yi=15 Vi
- y+ip,is the complex number
i’ =—1 p, A
pPy=2 Tt ©
! -
0 »=15 > Nesrezing




Remark

* The fact that imaginary numbers has hitherto been
surrounded by mysterious obscurity, is to be attributed
largely to an ill adapted notation.

- If “+17, “-1”, and “N-1” had been called “direct’, “inverse”
and “lateral” units, instead of “positive”, “negative” and
“imaginary’”, such an obscurity would have been out of the

question.
Carl Friedrich Gauss
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New approach

* We propose a different approach to time series modelling.

Y, +ip,

- where p. is information potential

* Instead of:

yt:f(yt—l’ yt—Z"”’xl’x2,"')+8t
* forecasting model now has a form:
yt+ipt:f(yt—1+ipt—l’ Vieatip, g, X ’x2,“')+8t+i S
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Theoretical framework

* Simple exponential smoothing:
.),>t+1 = ay, +(1_a)j>t

* Principle of CES: smooth level and combine it with
information potential estimate.

- Basic form of CES:

Y +i 1A7r:(0‘0+i0‘1)(yt—1+i€t—1)+(1_ao+i_ial)(i’t—l"'i ]A9z—1)

S = Viss _.),}t—s S, = Ayt Sy :f(xl,taxz,tﬂ“’)
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D
Theoretical framework

j}t+iﬁt:(ao-l-ial)(yt—1+igt—1)+(1_a0+i_ial)(5/t—l+ij?t—l)
- Complex variables -> system of real variables:

rj’t:(aoyt—l"'(l_O‘o)JA’t—l)_(Oclgt—l"'(l _al)pt—l)
\pt:(aogt—l'l'(l _OLO)pt—l)-l-(alyt—l-l-(l_O(’l)j\/t—l)

* Final forecast of CES consists of two parts:

- smoothed level,
- information potential part.
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State-space form

* Any exponential smoothing method has an underlying
statistical model.

* State-space model with Single Source of Error.

* Every time series consists of components:
- level,

- trend,
— seasonality,

— error.
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State-space form

* Any time series model consists of:
- transition equation: x,=Fx, ,+ge, &~N(0,0°)

A
g_
= |
3 8
8 |
=2
=_
R
g o
(7]
(=]
a_
| I | I |
1 2 3 4 5
Time

Lancaster Ceni_te for
Forecasting

www.forecasting-cenfre.com



State-space form

* Any time series model consists of:
— measurement equation: y,=w'x,_ +g,
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State-space form

* State-space model with Single Source of Error:

— measurement equation: y,=w'x,  +e,

- transition equation: x,=Fx,_ +g¢,

Lancaster Ceni_re for
Forecasting

www.forecasting-cenfre.com




State-space form

- State-space form of CES:
— measurement equation:

yt:lt—1+et
- transition equation:
L[ =oy)l(1, [ 4 “o)st
c,] \1 1—0ay]lc,_, 1) o
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State-space form

- State-space form:

V=1, +g
l|— I=(1-a)) Loy |4~ c+ O‘O)gt
c,| \1 1—04/lc, | Ay %
* Likelihood function:
| 1| I (&,
flagtia, o’ly)= oian| &P —5; (6)
* Maximizing it is equivalent to minimization of SSE:

T
SSE=) ¢’
t=1
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Time series simulation
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Example. Trended series

* Series N2692 from M3
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Example. Trended series

- ETS(M,AN)

Forecasts from ETS(M,A,N)

Series N2692
6200 6600 7000 7400 7800 8200
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Example. Trended series

* CES
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Example. Trended series

* CES
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Example. Stationary series

* Series N1661 in M3
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Example. Stationary series

* ETS(M,N,N)
Forecasts from ETS(M,N,N)
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Example. Stationary series

* CES
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Example. Stationary series

* CES
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Empirical results: setup

- M3-Competition data. 3003 time series.

* Rolling origin.

- Automated ETS was used to split data into categories:
- level non-seasonal,
- level seasonal,
- trend non-seasonal,

- trend seasonal.
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Empirical results: setup

- M3-Competition data. 3003 time series.
* Rolling origin.
- Automated ETS was used to split data into categories.

Series Number of series Overall
type Level Trend Forecasting | Rolling
series series horizon origin
horizon
year 255 390 645 6 12
quart 306 450 756 8 16
month 686 742 1428 18 24
other 61 113 174 8 16
Overall 1308 1695 3003
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Empirical results: competitors

Naive (Naive),

Simple exponential smoothing (SES),

Holt's additive trend (AAN),

Pegels’ multiplicative trend (MMN),

State-space ETS with AICc model selection (ZZN),
Gardner’s Damped trend (AAdN),

Taylor’'s Damped multiplicative trend (MMdN),
Theta using Hyndman & Billah, 2003 (Theta),
Hyndman & Khandakar 2008 Auto ARIMA (ARIMA),
10.Complex exponential smoothing (CES).

© ©®© N o s~ wDdh =
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Empirical results

- MASE was calculated for each of the horizons from each
of the origins,

* Nemenyi test was conducted to compare methods for
each of the series type.

- General results for CES:

/

- at least as good as SES on level series,
v - — outperforms MMN and AAN on level series,

- at least as good as MMN and AAN on trend series,

o

— outperforms all the methods on monthly trend series.
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Empirical results. Nemenyi test

Trended series, monthly data
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Empirical results
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Conclusions

* CES

is flexible,

has an underlying statistical model,

IS able to identify trends and levels,

does it better than Holt and Pegels,

is at least as good as SES,

outperforms all the other methods on monthly data,

IS more accurate on long-term horizons.
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Thank you!

lvan Svetunkov,
email: i.svetunkov@lancaster.ac.uk
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