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Abstract

Simple moving average (SMA) is a well-known forecasting method. It is easy to understand
and interpret and easy to use, but it does not have an appropriate length selection mechanism
and does not have an underlying statistical model. In this paper we show two statistical
models underlying SMA and demonstrate that the automatic selection of the optimal length
of the model can easily be done using this finding. We then evaluate the proposed model on
a real dataset and compare its performance with other popular simple forecasting methods.
We find that SMA performs better both in terms of point forecasts and prediction intervals
in cases of normal and cumulative values.
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1. Introduction

Simple moving average (SMA) is a very basic forecasting method, that is widely used
in practice, sometimes competing with exponential smoothing, usually ending up being the
second popular in companies (for example, see Winklhofer, Diamantopoulos, and Witt,
1996; Weller and Crone, 2012). The reason for its popularity is the simplicity of the method
— practitioners can understand what it implies and how it can be used. However, being
a simple method, it has several drawbacks. First, the order (length) of moving average
needs to be selected before applying the method. This is usually done using forecaster’s
judgment. Second, there is no concise statistical model underlying the SMA. This makes
the construction of the correct parametric prediction intervals close to impossible, which in
practice leads to challenges in inventory control decisions. Third, because of its simplicity
the SMA does not seem interesting to academics. As a result, the SMA is usually neglected
in forecasting research and is not considered as a forecasting method worth investigating.

In this paper we demonstrate two simple statistical models underlying the SMA. This
finding allows looking at the SMA from a new perspective making it a sophisticated model.
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This also allows automating order selection for the SMA and constructing the correct predic-
tion intervals. We show that using the SMA in this new form simplifies forecasting process
and demonstrate on the example of real data the advantages of the SMA in comparison to
several other basic forecasting models.

2. Literature Review

Over the years the Simple Moving Average was mainly discussed in inventory control
context. It is usually considered as one of the competitors of Simple Exponential Smooth-
ing (SES) and is used very often for cases of low level and intermittent data mainly as a
benchmark (see, for example Syntetos and Boylan, 2006; Rego and Mesquita, 2015).

Sani and Kingsman (1997) compare several forecasting methods in terms of inventory
performance on simulated data. They find that the SMA(12) performs very well for the low
level data, outperforming the SES with a non-optimised smoothing parameter.

Syntetos and Boylan (2006) compare the SES, the SMA(13) and two other forecasting
methods on both simulated and real intermittent data. They assess the performance of the
methods on customer service level and find that the SMA(13) is one of the best forecasting
methods in the comparison.

Ali and Boylan (2012) discuss the prevalence of the SMA and the SES in practice. They
also show how the variance of the demand influences the supply chain when the SMA and the
SES are used instead of the correct ARIMA model for forecasting purposes. In a follow-up
paper, Ali et al. (2015) discuss the advantages of the SMA for downstream demand inference
when the information about the demand is not shared in the supply chain.

As it can be seen, the SMA is used in inventory management literature as a method
for different purposes, but has not been studied on its own. The similar situation is in the
forecasting context, where the SMA is discussed even less often, and is seldom included as a
benchmark. For example, it was included in the original M-competition (Makridakis et al.,
1982), where the authors selected the optimal length of the SMA based on the minimum of
sum of squared errors. The authors showed that the SMA with order selection performed
very similar to the SES (measuring the accuracy using MAPE — Mean Absolute Percentage
Error), slightly outperforming SES on monthly data. The difference in performance of
the two methods seems statistically insignificant, but have never been explored in detail.
However, it was excluded from the follow-up M3-competition (Makridakis and Hibon, 2000).

The only attempt to develop a statistical model underlying the SMA was given by John-
ston et al. (1999). The authors discuss the SMA and the SES and show that the SMA can
be connected to a steady-state model, but do not discuss this model in details, focusing
on variances calculations. The authors derive conditional variance for the SMA and the
variance for the level. They also derive the formula for the optimal SMA length calculation,
which minimises variance of the level of the model. Finally, based on these results, they
derive the formula, connecting smoothing parameter o of the SES and the length of the

SMA:
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where k is the order (length) of the SMA and « is the smoothing parameter of the SES. The
same formula can be rewritten as:
VI12k2 +3 -3

o= YR . (2)

However, these two formulae can only demonstrate an approximate connection between the
SES and the SMA, because of the fundamental differences between the two methods: the
former is based on the infinite weighted average of the actual values, while the latter is based
on the fixed order of uniformly-weighted average of the £ actual values. Furthermore, &k = 1
for the SMA corresponds in (2) to a ~ 0.87, although both methods should revert to Naive
method in this case, taking only one, recent observation as a forecast (meaning that o = 1
in the SES). This shows that the derived formula (2) is approximate and can only give a
general understanding of how the two methods can be connected.

Johnston et al. (1999) conduct the simulation experiment, but never evaluate the per-
formance of the SMA on the real data.

Overall, the question of the statistical model underlying the SMA was neglected in the
literature over the years. There are several reasons for that. This topic is not considered
as an interesting one for academics, because the SMA is perceived as a simple forecasting
method. Despite the ample evidence that simple models perform on average as good as more
complicated ones (see for example Makridakis et al., 1982; Makridakis and Hibon, 2000), still
some academics focus on deriving and proposing complicated, statistically sophisticated and
more challenging models rather than on studying the properties of the simpler ones. Fur-
thermore, most of the widely-used commercial forecasting software provide relatively simple
methods that have shown to perform well. Taking all of these into account, deriving statis-
tical models underlying the SMA and studying their properties should benefit both sides:
practitioners who use this method and academics who neglect it because of its simplicity.

3. Models Underlying SMA

The basic formula for the SMA can be written as:

k
R 1
Ut = E ; Yt—i, (3)

where y; is an actual value, ¢, is a forecast for the observation ¢t and k is the length of
the SMA. In order to derive a statistical model underlying (3), the error term needs to be
introduced. The simplest way to do that is to say that y; = §:+¢;, where ¢, ~ N'(0,0?). Then
a simple model underlying the forecasting method (3) can be formulated in the following
way:

k
1
Yy = A ; Yi—i + €. (4)



If the actual values are moved to the left hand side of the equation (4), then we end up with:

1 k
Yy — E Yi—i = €, (5)

=1

which is AR(k) process, that can be written in the following compact form:

(1 — Z qsl-Bi) e =€, (6)

where all ¢; = ¢ = + and Zle ¢; = 1. As we see, any SMA method has underlying AR(k)
model. Knowing that, allows looking differently at the usage of this forecasting method.

First inference that can be made based on (6) is that the condition Y. | ¢; = 1 means
that any AR(k) model underlying SMA (k) is not stationary, because at least one of the roots
of the polynomial will always be equal to one, meaning that it lies on the unit circle edge.
This can be seen by analysing the the characteristic equation 1 — Zle ¢zt = 0, for which
x = 1 is one of the roots. This property of the SMA shows its similarity to the SES, which
has an underlying non-stationary ARIMA(0,1,1) model.

Second, in case of k = 1, the SMA model corresponds to the Random Walk, while in the
case of k — oo it corresponds to a model with the global (deterministic) level. This means
that in general the SMA model can be applied to a wide variety of level time series with
different characteristics.

Third, initialisation of AR(k) model can be done in different ways, some of which would
allow preserving observations, so the problem of losing k observations at the start of time
series can now be resolved. This can be done, for example, using backcasting or Kalman
filter.

Fourth, statistical model allows selecting the most appropriate order k for time series
using information criteria, so the selection of the SMA length becomes no longer an issue.
Notably, there are only two parameters to estimate in the SMA of any length: the value of ¢
and the variance of error term. This means that the Mean Squared Error, lying in the core
of likelihood method (assuming normal distribution), determines the correct order, given
that the sample sizes of all the SMA models are the same. This finding indirectly supports
the approach used by Makridakis et al. (1982). An example of information criterion used
for optimal order selection is AIC (Akaike’s Information Criterion):

AIC = 22 — 20(0]Y), (7)

where 6 is the vector of all the parameters (in the case of SMA it contains variance and
the value of ¢) and Y is the vector of all the actual values. The optimal order k is selected
by minimising an information criterion, which can be either AIC, AICc, BIC or any other
criterion selected by analyst. The procedure implies fitting all the possible SMA models and
then selecting the one that has the lowest information criterion.
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Fifth, a correct conditional mean can be produced using this statistical model, which is
not necessarily a straight line, but will always be something converging to a constant. This
means that eventually any SMA model will produce a straight line as a point forecast, but
it may take some time to converge to that value depending on the length k. This feature
corresponds to the one in AR models.

Finally, using (6), a conditional variance can be calculated, which allows producing the
correct parametric prediction intervals for any SMA.

Knowing (6) also allows deriving state-space models underlying any SMA, which sim-
plifies the derivation of conditional variance of the model and potentially allows treating
missing values on the fly. This can be done either in Multiple Source of Error (Durbin and
Koopman, 2012) or in Single Source of Error (Snyder, 1985) framework. For example, the
latter can be written as the following system (using Hyndman et al., 2008, p.174):

yt = W,thl + €t (8)
vi = Fv, 1 +ge
where
1 I 1 1
k tn-l I3 0
F = E ) g = 5 9 W = )
1 1 :
0 K 0

and v, is the vector of states. The initial values of v, can be estimated via maximisation of
likelihood function, but for short lengths of SMA this will result in overfitting of the first k
observations of data, which in a way leads to the loss of these k observations. So in order to
preserve them, we propose using backcasting. This procedure is done iteratively. On each
iteration the following is done:

1. The model (8) is fitted to the data from the first observation till the last one;

2. When the end of the data is reached, the following equation is used in order to recal-
culate the states values and obtain new estimates of the initial state vector:

Y = W'V + € (9)
vi=Fvi +ge

This equation is used from the last observation till the very first one. The new initial
state v is obtained.

This procedure is repeated several times until the stable estimate of initials state vy is
obtained.

Using the state-space model (8) for the estimation of the SMA (k) with the backcasting
as the initialisation mechanism allows preserving observations. This means that the SMA of
different orders can be estimated on the same data without the loss of initial k& data points.
This also makes likelihoods for different SMAs comparable with each other.
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The conditional variance of the state-space model (8) has been discussed in (Hyndman
et al., 2008), but the model also allows deriving the cumulative conditional variance, which
corresponds to the aggregated over the forecasting horizon estimate (see Appendix A for
the derivation):

h—1
oLy =0 (1 +> (14 (- j)w’Fj_lg)2> , (10)

j=1
where 2 is the variance of one-step-ahead forecast error, h is the forecast horizon and o7, is
the conditional cumulative variance (conditional on the values available on the observation
t). The variance (10) can be used for safety stock calculations in an inventory control system.

4. Experimental design

In order to see how the proposed model performs in practice, we conduct an experiment
on real data.

4.1. Dataset

We use real monthly sales data coming from a multinational pharmaceutical company.
The data span over a period of 25 months, and it has been used before to examine the
performance of statistical and judgmental forecasts (see for example Franses and Legerstee,
2009, 2011; Petropoulos, Fildes, and Goodwin, 2016; Wang and Petropoulos, 2016). In this
paper, we only use the actual values from the dataset.

The complete dataset consists of 1101 time series, however, we filtered out series which
contained invalid data points. Furthermore, as the proposed forecasting model is a level
one, we are focusing on the level time series. This was tested using ADF and KPSS tests
(kpss.test() and adf.test() functions from tseries package in R); a time series was
flagged as level if either the null hypothesis was not rejected in KPSS or the null hypothesis
was rejected in ADF. Taking that the sample size for each time series is small (25 observa-
tions), we ended up having both global and local level series, which added up to 664 time
series.

The descriptive statistics of the data are presented in table 1. The various statistics that
are calculated within the series are presented in columns (minimum, maximum, median,
mean, standard deviation and coefficient of variation), while the rows present the six-figure
summary (minimum, first quartile, median, mean, third quartile and maximum value) across
all series.

4.2. Benchmark models used in the evaluation
We use the following popular level models as benchmarks in order to assess the perfor-
mance of SMA:
1. Random walk, which has Naive as forecasting method (denoted as “Naive” in this
paper):
Yo =Y—1 t+ € (11)



Table 1: Descriptive statistics (columns) of the data used, calculated per series and analysed across series

(rows).

Statistic Minimum Maximum Median ~ Mean  St. Dev. CoV (%)
Min 10.0 53.0 31.0 30.1 9.7 6.4
Q1 137.5 764.5 400.2 416.5 131.8 19.5
Median 535.0 2404.0 1399.0 1430.0 373.8 27.6
Mean 3950.0 10950.0 6862.0 6978.0 1660.0 33.1
Q3 2565.0 9642.0 5044.0 5458.0 1453.0 40.0

Max 293900.0  500500.0  393200.0 385500.0 52910.0 395.5

It is worth noting that Random Walk model can be represented as ARIMA(0,1,0)
model:

(1-—B)y = €. (12)

This is the simplest forecasting model and it is used mainly as a benchmark for all
the other models. We do not expect this forecasting method to perform very well in
our experiment, because the data seems to be well behaved, while Naive has a short
memory, taking only last observation into account.

. Average of the whole series (denoted as “Average”):

Y = 1+ e, (13)

where [ is the average level of the whole series. This model is expected to perform bet-
ter on our dataset than Nave, because it has long memory, taking all the observations
into account. However we do not know how it will perform against other competi-
tors. Following the derivations similar to SMA, it can be shown that Average has
ARIMA(n,0,0) model, where n is the number of in-sample observations:

n n

1 1 1
(1——B——BQ—---——B”)yt:6t. (14)
n

ETS(A,N,N), which underlies Simple Exponential Smoothing method (denoted as
“SES”):
Y =1li1+6&
lt = lt_l + OéEt’

(15)

where [; is level component and « is smoothing parameter. This is one of the most

popular forecasting models used in inventory control and it is the main competitor of
the SMA. This model can also be represented as ARIMA(0,1,1) model:

(1=B)y = (1+6.B)e, (16)

where 6; = o — 1.



4. AR(p) model:
(1= ¢1B— B> —--- = ¢,B") y = &, (17)

where ¢;i is the i-th parameter. This model is added as it can be considered an
unrestricted version of SMA, model that allows arbitrary weights distribution over the
observations. The estimation of the model can be done using OLS, while the selection
of the optimal order p is done using an information criterion. This is the most flexible
model of all the models included in our competition, so potentially it can outperform
the others.

We use smooth package for R (v2.1.1, available on CRAN) for all of these models. In
order to assess the performance of the SMA, we use the function sma(), which imple-
ments the model in the state-space form (8) with automatic order selection and is called
the following way: sma(y, ...). We also use es() function for the SES, the Naive and
the Average. The SES is applied with optimal smoothing parameter to each separate
time series and forecast origin and is called using: es(y, model="ANN", ...). For the
Naive, we set the smoothing parameter of the SES equal to one: es(y, model="ANN",
persistence=1, ...). For the Average we set the initial level of the SES equal to the av-
erage of the in-sample data and smoothing parameter equal to zero: es(y, model="ANN",
persistence=0, initial=mean(y), ...). Finally, for the AR(p) model we use auto.ssarima()
function, which implements ARIMA in state-space form and allows selecting the optimal
order based on an information criterion, with a restriction on the maximum autoregres-
sive order of the model equal to the minimum in-sample size (15 periods). The following
call is used for that: auto.ssarima(y, orders=list(ar=15), lags=1, constant=FALSE,
workFast=FALSE, initial="backcasting", ...).

For each of the models we produce both point forecasts and prediction intervals of 80%
and 95% width. We produce both simple and cumulative values for both point forecasts and
prediction intervals (this is regulated by the boolean cumulative parameter). The former is
needed in order to assess the models from forecasting perspective, while the latter is useful
as it directly links with inventory control systems.

4.3. Measures

We consider a range of error measures to evaluate the performance of the point forecasts
of the SMA model against that of the benchmark models. First, we consider two percentage
accuracy measures, namely the Mean Absolute Percentage Error (MAPE) and the symmetric
Mean Absolute Percentage Error (sMAPE). While we acknowledge the disadvantages of
these error measures (see for example Goodwin and Lawton, 1999; Hyndman and Koehler,
2006), we believe that their inclusion is necessary given their popularity in practice.

Moreover, we consider a variety of scaled error measures to capture accuracy, bias and
variance of errors. First, the highly-cited Mean Absolute Scaled Error (MASE, Hyndman
and Koehler, 2006) is suitable for the evaluation of the accuracy of the forecasts. Scaling is
performed in terms of the mean absolute error of the one-step-ahead random walk forecasts
for the in-sample. The statistical properties of MASE have been studied by Davydenko and
Fildes (2013). Second, we consider the scaled Mean Error (sME), the scaled Mean Absolute
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Error (sMAE) and the scaled Mean Squared Error (sMSE). These were used by Petropoulos
and Kourentzes (2015), while Kolassa (2016) discussed the advantages of sMSE over other
measures in the context of intermittent demand. The scaling of sME and sMAE is performed
by the arithmetic mean of the in-sample data, while the scaling of sSMSE is done by the square
of the arithmetic mean of the in-sample. sME is appropriate for measuring the bias of the
forecasts, SMAE (similarly to MASE) measures accuracy, while sMSE additionally to the
bias provides insights on the variance of the forecast errors.

Table 2 presents the definitions of the six error measures used in this study. We denote
the size of the in-sample with ¢, y, is the actual value at period ¢, 3,4, and 9,4, are the
actual and the forecast h periods ahead, and h is the forecast horizon.

Table 2: Error measures and their definitions.

Measure Formula Purpose

MAPE 10 Zj ) % Accuracy
sMAPE ¢ S =1 % Accuracy

MASE 5 Z; Ty |yt§ jT;' oo Accuracy

sME > ZJ 1 % Bias

sMAE W Z] 1 % Accuracy

sMSE Ly =1 % Bias and variance

In addition to the error measures for evaluating the performance of point forecasts, we

consider three measures to assess the prediction intervals produced by each model:

e (Coverage, which refers to the percentage of times where the actuals do not lie outside
the lower and upper bounds of the prediction intervals.

e Upper coverage, which refers to the percentage of times where the actuals do not
surpass the upper bound of the prediction intervals. We use this measure as a proxy
for the fill rate of demand, where the targeted service level (SL) is linked to the
confidence level of prediction intervals (C'L) as: CL =2-SL — 1.

e Spread of the prediction intervals, calculated as the difference between upper and lower
bounds of the prediction interval divided by the mean of the in-sample data. We use
this measure as a proxy for the inventory holding cost, as the spread of the prediction
intervals can be associated with the calculation of the safety stock.

4.4. Process

We conduct the rolling origin evaluation (Tashman, 2000). For each time series, we
consider an initial in-sample set of 15 observations. The last observation of the in-sample is
referred to as forecast origin. This initial in-sample is used in order to estimate parameters
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of each model and then produce forecasts for the next three periods (16, 17 and 18); in
other words, we set the forecast horizon to three periods ahead. A forecast horizon of three
periods ahead allows us to explore the performance of the models for more than one steps
ahead and to evaluate models across multiple origins. Subsequently, the performance of each
model is measured using the metrics defined in Subsection 4.3 by comparing the forecasts
for the periods 16 to 18 with the respective actual observations.

We then increase the in-sample set by one observation, setting the forecast origin to
period 16. Parameters are re-estimated, forecasts are produced for the required horizon
(periods 17, 18 and 19) and performance is measured. The process continues by rolling
through the data, period after period, till we reach the end of the data. The last forecast
origin is period 22, from which we produce forecasts for periods 23 to 25. All in all, we
produce three-steps-ahead forecasts 8 times (from origins 15 to 22).

Figure 1 provides a visual representation of the evaluation process applied for this study.
This process is repeated for each of the 664 time series.

|1|2|3‘4|5|6|7|8|9|10|11|12|13|l4|15|16‘17|18|19|20|21|22|23|24|25|

Origin = 15

Origin = 16

Origin = 17

Origin = 18

Origin = 19

Origin = 20

Origin = 21

Origin = 22

Figure 1: The rolling process applied for evaluating the performance of the SMA model.

White cells in Figure 1 correspond to the training set of data, while the grey cells
correspond to the test part. All the models were estimated on the former part and assessed
on the latter one.

5. Empirical results

5.1. Fvaluation of point forecasts

Table 3 presents the performance of the Naive, the Average, the SES, the AR and the
SMA for the various error measures defined in Subsection 4.3 and for different horizons (1
to 3 steps ahead). The performance of each model has been averaged (arithmetic mean)
across eight validation samples (see figure 1) and 664 time series. The best and second-best
performances across the methods for each error measure are presented in boldface and italic
respectively.

Table 3 suggests that the SMA model performed very well in our experiment. In fact,
it gave the most accurate forecasts in terms of four measures (sSMAPE, MASE and sMAE),
while being second-best for the other three (MAPE, sME and sMSE). Note that the very
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Table 3: Point forecast performance of the SMA against the Naive, the Average, the SES and the AR for
the various error measures and different forecasting horizons.

Horizon Method MAPE sMAPE MASE sME sMAE sMSE
Naive 58.345  33.385 1.037  0.017 0.324 0.290

Average 49.769 < 27.628  0.867 -0.016 0.263 0.162

h=1 SES 49.762  26.091  0.807 -0.014 0.251 0.179
AR 47.281 33.003  0.951 0.056  0.297 0.214

SMA 48.834 25.691 0.790 -0.006 0.247 0.168

Naive 57.363  33.506 1.030  0.028 0.324 0.291

Average 48.183 27.719  0.888 -0.005 0.269 0.180

h =2 SES 47.180  26.155  0.827 -0.002 0.257 0.191
AR 44.604 34.399 0.989  0.087 0.308 0.231

SMA 46.988 25.666 0.807 0.004/ 0.252 (.189

Naive 50.056  34.200 1.074  0.034 0.335 0.316

Average 48.761  28.490 0.931 0.000 0.280 0.211

h=3 SES 46.557  26.823  0.866  0.003 0.267 0.219
AR 43.329 35.837 1.034 0.114 0.321 0.259

SMA 45.385 26.201 0.842 0.009 0.261 0.210

good performance of AR in terms of MAPE is not confirmed when other measures are
considered. It is noteworthy that AR produces the most biased forecasts based on sME.
Also, as we expected, the Naive performs overall the worst, a result that is consistent across
all accuracy measures. The good performance of the SMA can be explained by the fact
that we dealt with the data with slowly changing level in this dataset. As a result, taking
the average of several last observations allows capturing the level better than distributing
weights in an exponential manner (SES) or taking all the observations into account (as
Average model does).

Note that the SMA outperforms the SES in all measures apart from sME for horizons 2
and 3 steps ahead. This is a very important finding, especially if we consider the popularity
of the latter and its widespread application across the industry. Our finding is also consistent
with the “simple rather than complex” agenda in forecasting (Makridakis and Hibon, 2000).
Being in position to estimate the optimal order (k) per series and origin, the SMA model
achieves not just similar but better performance than the SES, with a simpler estimation
process. Fitting an optimal SMA model requires, apart from the variance of the errors, the
estimation of a single parameter (k) in contrast to the SES where the same process implies
the estimation of two parameters (the smoothing parameter o and the initial level ).

In order to see if the differences between the error measures are statistically significant,
we apply the Multiple Comparisons with the Best (MCB) test (for more details, see: Koning
et al., 2005). We use the nemenyi() function of the TStools package (v2.3.0, available on
GitHub). The calculation of the average ranks is done for each error measure separately.
The average value is calculated across horizons and origins for each method and time series.
Figure 2 shows the results of the test. As can be seen, the SMA (based on optimal estimation
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of the value of order, k) achieves the best average rank performance among the five models
for five out of six measures. However, while the Naive and AR perform significantly worse
than the other three models, the SMA performs similar to the Average and the SES, as

indicated by the overlapping rank intervals.

MAPE SMAPE
Naive o—=e—0 Naive 0—e—o0
AR — o—=e—0 AR — 0—e—o0
Average - o—e—o Average o-—e—oO
SES o—e—o0 SES — o—e—o
SMA optimal —| o—e—o0 SMA optimal — o—e—o0
T T T T T T T T T T T T
2.0 25 3.0 35 4.0 45 2.0 25 3.0 35 4.0 4.5
MASE sME
Naive — o—e—o0 AR o0—e——o0
AR — o—e—o0 Naive — 0—e—o0
Average — o—e—o SMA optimal oO—e—o0
SES — o—e—o SES o—e—o0
SMA optimal — o—e—o0 Average — o—e—o0
T T T T T T T T T T
2.0 25 3.0 35 4.0 4.5 25 3.0 3.5 4.0
sMAE sMSE
Naive o—e—o Naive o—e—o
AR - o—e—o AR o—e—o
Average — o-—e—o Average — o—e—o
SES — o—e—o SES — o—e—o
SMA optimal — o—e—o SMA optimal — o—e—o
T T T T T T T T T T T T
2.0 25 3.0 35 4.0 4.5 2.0 25 3.0 3.5 4.0 4.5

Figure 2: Multiple Comparisons from the Best test for SMA and benchmark models.

In order to investigate further the performance of the SMA, we analyse the selected
optimal orders by the model. Figure 3 presents the histogram of these orders (the total
number of fitted models is 664 time series X 8 origins). While we observe a great variation
with regards to the optimal value of order k, we also observe concentrations around the
values 12 to 16. This may indicate that the time series under consideration do not exhibit
rapid changes in level, because the moving average of one year of data and more is used
very often. This also aligns with findings of Sani and Kingsman (1997); Syntetos and Boylan
(2006), where the SMA(12) and the SMA(13) performed very well in real time series. Figure
3 also provides an indication of the flexibility of the SMA model towards the selection of
different values of k as the series evolve.

To better understand the order selection mechanism of the SMA model proposed in
section 3, we compare the performance of the proposed SMA model (where an optimal value
for k is selected for each series and each origin) with the performance of the SMA models
with predefined values of k using MCB test (based on sMAPE). We consider all the fixed
SMA models with & from 1 up to 15, which corresponds to the maximum possible value
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Figure 3: Frequency of the selected optimal orders (k).

when the smallest possible sample is considered (origin 15). We denote each fixed SMA
model as SMA(k). Note that the SMA(1) is equivalent to the random walk model.

Table 4 presents the performance of the optimal versus the fixed-order SMA models for
the various error measures considered. The proposed optimal SMA model have the best
average performance for three out of five measures. Figure 4 shows the results of the MCB
test. We observe that while the optimal SMA is not ranked first, its performance does not
differ significantly from the best model, which for this data set is the SMA(12).

Table 4: Point forecast performance for optimal and fixed SMA models for the various error measures,
averaged across all horizons.

Method MAPE sMAPE MASE sME sMAE sMSE
SMA(1) 595.255  33.697  1.047 0.026 0.327  0.299
SMA(2) 50.477  29.104 0915 0.024 0.286 0.227
SMA(3) 47.827  27.645 0.870 0.020 0.272  0.203
SMA(4) 46.709  26.516  0.837  0.016 0.260 0.187
SMA(5) 46.713  26.163  0.826  0.013  0.257  0.182
SMA(6) 46.483  25.910 0.815 0.012 0.254 0.179
SMA(7) 46.515  26.035 0.818 0.011 0.256 0.177
SMA(8) 46.197 26.071  0.820 0.011 0.254 0.176
SMA(9) 46.942  26.300  0.828 0.010 0.256  0.177
SMA(10) 46.970  26.415 0.833  0.008  0.257 0.176
SMA(11) 46.728  26.384  0.833  0.005 0.256 0.175
SMA(12) 46.409  26.237  0.825 0.002 0.254 0.172
SMA(13) 46.615  26.377  0.831  0.001 0.2556 0.172
SMA(14) 46.651  26.587  0.839 0.000 0.257 0.173
(

SMA(15) 47447  26.880  0.850 -0.001 0.260 0.176
SMA optimal 47.069 25.853 0.813 0.002 0.254 0.189

It should be emphasised that the identification of the best of the pre-fixed models in
this exercise is only taking place ex-post (once the future data have been observed) and we
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Figure 4: Multiple Comparisons from the Best test for optimal and fixed SMA models.

could not have such a knowledge a priori. In a real scenario, one would have to make a
choice for an optimal order (k) that would be applied across all the time series before the
actual performance is observed. Yet, the proposed SMA model provides a robust approach
for identifying the optimal value of k£ both in an individual and an aggregate manner: the
concentration of high frequencies in Figure 3 coincides with the models that outperform the
optimal SMA model according to Figure 4. Taking that the optimal SMA solves the problem
with order selection and performs similar (from statistical point of view) to the best SMA,
we would argue that it can be used as a universal model for a set of time series.

Lastly, we attempt to investigate the links between the selected optimal « values in the
smoothing parameter of SES and the optimal order k£ in SMA model. The latter have been
converted to the former, using equation (2). Their relationship is graphically depicted in
Figure 5. The horizontal axis presents the optimal values of a from the SES model, while
the vertical axis presents the values of o that correspond to the optimal k orders of the
SMA model. The grey diagonal line corresponds to the perfect correlation between the two
variables. We observe that:

e The relationship proposed by Johnston et al. (1999) is not exact, especially if one

focuses on the higher values of «.

e The formula (2) converts the optimal values of k into those that generally correspond
to «a values higher than the ones selected by the SES. In fact, SMA-based o parameters
are higher than the SES ones in more than 92% of the cases (points lying above the
diagonal line).
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Figure 5: Relationship between a and k parameters for SES and SMA models.

e Just three values of k correspond to « values higher than 0.4 (vertical axis with o =
{0.87,0.59,0.44}). This finding, doubled with the superior performance of the SMA
over the SES, suggests that extensive search within the parameter space of optimal
values for the alpha smoothing parameter in the SES does not necessarily add value
to forecasting performance in case of stationary data. In fact, a suboptimal selection
of the smoothing parameter can result in similar (if not better) levels of accuracy.
This result confirms the findings of a recent study by Nikolopoulos and Petropoulos
(in press).

Overall, the SMA is a flexible model, that performs very well in terms of accuracy and
bias. It is also easier to estimate and use than the SES. It is also important to note that the
connection derived by Johnston et al. (1999) is only approximate and cannot be used as an
exact connection between the SMA and the SES parameters.

5.2. Evaluation of prediction intervals

Table 5 presents the performance of the models in terms of prediction intervals. As
noted in Subsection 4.3, we measure three quantities, namely coverage, upper coverage
and spread. Whereas lower values are better for spread, values closer to nominal ones
are generally desirable for coverage and upper coverage. The desired levels for coverage
percentage directly correspond to the confidence levels of the prediction intervals, that is 80
and 95%. The desired levels for the upper coverage are given by the relationship between
targeted service level and confidence level presented in subsection 4.3, giving 90 and 97.5%.

We observe that the Naive gives coverage and upper coverage levels that are higher than
the target (especially for the longer horizons) and this significantly and negatively affects
the spread. This is the expected behaviour caused by the properties of the model. All the
other models perform on par with regards to (upper) coverage levels. With regards to the
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Table 5: Prediction intervals performance of the SMA against the Naive, the Average, the SES and the AR
for different planning horizons.

Horizon Method

Coverage  Upper Coverage Spread
80% 95% 90%  97.5% 80%  95%
Naive 825 94.5 90.6 97.2 1.197 1.897
Average 78.6 93.6 90.0 96.0 0.847 1.340
h=1 SES 82.8 95.1 91.2 96.9 0.894 1.421
AR 78.0 927 87.3 96.0 0.972 1.545
SMA 82.2  94.5 90.9 96.3 0.869 1.377
Naive 924 98.7 95.7 99.0 1.692  2.683
Average 78.6 93.0 89.4 95.7 0.847 1.340
h=2 SES 82.5 94.8 90.9 96.6 0.909 1.444
AR 81.6 939 89.1 96.3 1.101  1.750
SMA 82.2  94.5 90.6 96.3 0.889 1.409
Naive  95.7 99.3 97.5 99.3 2.073  3.286
Average 77.1 92.1 88.5 94.8 0.847 1.340
h=3 SES 81.9 959 90.3 95.7 0.921 1.464
AR 85.2 95.7 90.6 96.9 1.254  1.994
SMA 81.9 936 90.3 95.7 0.909 1.441

spread of the prediction intervals, the Average appear to be the best, following by the SMA
model.

We can conclude that the superior performance of the SMA model in point forecast
evaluation is coupled with a good prediction intervals performance that is close or even
better to the levels of its main competitors (Average, SES and AR models). This observation
is emphasised on the longer horizons. This means that on top of decreased working stock
as a result of more accurate point forecasts, the SMA model results in a lower safety stock.
However, in inventory control the more important element is the cumulative forecasts and
respective prediction intervals, because the decision is usually based not on the average
forecast of sales, but on the forecast of overall sales over the forecasting horizon.

5.8. Fvaluation of cumulative forecasts and prediction intervals

Similarly to the Tables 3 and 5, Tables 6 and 7 present the performance of the cumulative
point forecast and corresponding prediction intervals for the various models. The aggregate
point forecast evaluation (Table 6) not only confirms the results of the non-aggregate one,
but also amplifies the relative differences between the methods. At the same time, the
evaluation of the prediction intervals for the cumulative forecasts (Table 7) suggests that the
SMA model achieves more accurate coverages and upper coverages percentages compared to
the Average and SES. However, this is balanced-off by a moderate increase in spread levels.

The good performance of the SMA in this part of experiment is essential for inventory
control, because it should lead to the decrease in costs and better demand satisfaction.
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Table 6: Cumulative point forecast performance of the SMA against the Naive, the Average, the SES and
the AR for the_various error measures.

Method MAPE sMAPE MASE sME sMAE sMSE
Naive 31.578 28.126 2578 0.079 0.816 1.931
Average 23.825 19.274 1931 -0.020 0.573 0.902
SES 22.117  17.467 1.720 -0.018 0.531 1.008
AR 24.305  26.823 2239 0.257 0.704 1.218
SMA 21.162 16.738 1.631 0.006 0.510 0.939

Table 7: Performance of the prediction intervals for the cumulative forecasts for the SMA against the Naive,
the Average, the SES and the AR.

Coverage  Upper Coverage Spread
Method g0 95% 90%  97.5%  80%  95%
Naive 94.1 989 97.1 99.5 4.478  7.099
Average 69.7 87.7 86.4 93.3 1.467 2.321
SES 77.5  92.6 88.8 95.2 1.656 2.632
AR 85.9 96.1 91.1 97.4 2.753  4.375
SMA 82.3 94.3 90.3 96.1 1.754  2.781

6. Conclusions

In this paper we have proposed simple statistical models underlying the simple moving
average method. This proposition allows selecting automatically length of the SMA model,
preserving observations and producing conditional mean and variance. This makes the SMA
a more powerful instrument that can be used in practice for different purposes and gives
statistical rationale for the method popular among practitioners.

We have conducted an experiment on real data and demonstrated the advantages of the
proposed model over other existing simple level models, that are used in practice. We think
that the good performance of the SMA in comparison with the SES and the Average on
the stationary data that we used, can be explained by the ability of the SMA to take only
several recent observations into account and distribute the weights between them uniformly.
This means that the complete negligence of the old data is beneficial in terms of forecasting
accuracy in this experiment.

The good performance of the SMA in terms of cumulative forecasts emphasises the
point that this model can be efficiently used for inventory control systems. On one hand it
outperforms all the other models used in the experiment in terms of point forecasts accuracy
(which should lead to the reduction of working stock), while on the other hand it produces
prediction intervals, covering the values very close to the nominal ones (suggesting that the
targeted service levels are met).

Overall, the SMA is a simple but efficient forecasting model that is already used in
practice and is now improved by the introduction of the statistical model. However, more
research is needed towards better identifying the cases when the proposed SMA model should
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be preferred over SES or other level models. Particularly, we would suggest applying the
SMA model to the other datasets featuring stationary series, ideally from different fields.

Appendix A. Cumulative Variance

In order to derive cumulative variance, the sum of actual values from t+1 to t+h (where
h is the forecasting horizon) needs to be calculated:

h
Yieh=> Ui (A.1)
j=1

Here we assume that h > 1, because in case of h = 1 the cumulative variance is just equal
to the variance of one-step-ahead forecast error. Inserting the measurement equations of (8)
instead of actual values in (A.1) leads to:

h
Yieh = (W'Vipjo1 + €iy) (A.2)
j=1

Any state vector value on the observation ¢ + j (where j # 0) can be represented as:

J
Vg = Flv, + Z F/'gerp, (A.3)

i=1

which can be inserted into (A.2) for all the j but j = 1 to obtain the following formula:

h h 7—1
Yien = Z wF v, + Z (Z wF " ge, 4+ etﬂ-) + €41 (A.4)
j=1

j=2 \i=1

The second summation is done from 7 = 2 instead of 7 = 1, because the one-step-ahead
actual value depends on v; and has only an error term €;,1. So the cumulative sum of the
actual values h-steps ahead is represented by (A.4) if we apply the state space model (8).
The cumulative conditional mean of the model is then equal to:

h
Mt+h‘t = ZW,F‘j_lvt, (A5)

i=1

because the error term is assumed to have zero mean. The conditional variance is slightly
more complicated and is calculated as:

h Jj—1
o2n =V (Yinlve) =V <Z (Z wF " gy + €t+j> + €t+1> : (A.6)

j=2 \i=1
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Regrouping elements in (A.6), the same variance can be written as:
h—1 h—j
ol =Vlem+d (14> WF' 7 g e . (A7)
j=1 i=1

The part w'F"7~'g is repeated h — j times in (A.7), so the second sum can be substituted
by the h — j:

h—1

02 =V | €pn+ Z (14 (h—HWF" 7 'g) ey | . (A.8)

j=1
Now taking into account the assumption of no autocorrelation in the residuals, the variance
(A.8) can be rewritten as:

>

~1
aih = V(ern) + (1 + (h — j)w'Fh*jflg)
1

2

V(ersj)- (A.9)

<.
I

Finally, if the assumption of homoscedasticity holds, then the variance of the error term will
be constant leading to:

h—1
o2 = (143 (1 + (h— HWEF 7 1g)* | o2 (A.10)
j=1

For simplicity the upper index h —j — 1 in (A.10) can be substituted by j — 1 without a
loss in the derivations.
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