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Introduction

A typical intermittent demand in wholesale looks like:
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Introduction

In retail we might get trends, i.e. demand obsolescence:
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Introduction

But there are products like this...
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Is this intermittent? Is this seasonal? Maybe both? Trends?

Ivan Svetunkov ISF2019

Using mixture models for demand forecasting in retail



Introduction Mixture distribution model The competition Finale Appendix References

Introduction
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It can be considered as intermittent, as demands occur at random.

The probability of occurrence pt is high in some weeks.

But it is low in the others.

If we know, when the next demand will happen, we can set pt = 1
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What might drive the demand in this case?

Splitting the demand into two parts... yt = otzt

Demand sizes:

• Seasonality;

• Promotional activities;

• Prices.

Demand occurrence:

• Seasonality;

• Promotional activities;

• Prices.
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Mixture distribution model

This is not a new idea, it has been known long in statistics and
econometrics.

Hua et al. (2007) use a mixture of logistic regression (demand
occurrence) and a bootstrap (demand sizes).

Snyder et al. (2012) used a mixture of Hurdle Shifted Poisson and
Geometric distributions.

Jiang et al. (2019) used Poisson-based mixture distribution models
together with logistic regression.
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Mixture distribution model

The mixture distribution model can be summarised as:

yt = otzt
zt is a statistical model
ot ∼ Bernoulli (pt)
pt is another statistical model

, (1)

where zt is the demand size, ot is the demand occurrence {0, 1},
pt is the probability of occurrence.
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Mixture distribution model

Examples for zt:

• Normal linear regression;

• Log normal linear regression;

• Normal regression after Box-Cox transform;

• Negative binomial regression;

• Poisson regression;

• Anything else for positive data.

Normal distribution does not make sense from statistical point of
view.

ETS and ARIMA are out of the scope of this presentation.
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Mixture distribution model

Examples for pt:

• Logistic regression;

• Probit regression.

Mix the demand sizes and the demand occurrence in order to
obtain the full model
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Mixture distribution model

An example of a mixture of the logistic and the log normal:

yt = otzt
zt ∼ logN (µz,t, σ

2
z)

µz,t = B′Xt

ot ∼ Bernoulli (pt)
pt =

1
1+exp(−µp,t)

µp,t = A′Xt

, (2)

where B and A are the vectors of parameters and Xt is the vector
of explanatory variables.
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Mixture distribution model

This can be estimated using the likelihood approach.

But the cases of ot = 0 need to be considered as “missing data”,
when estimating zt.

Svetunkov & Boylan (under review) show that the likelihood in this
case can be calculated as:

`(θ, σ2ε |Y) =
∑
ot=1

log fz (zt)−
T0
2

log(2πeσ2z)

+
∑
ot=1

log(pt) +
∑
ot=0

log(1− pt)
, (3)

where T0 is the number of zeroes.
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Mixture distribution model

Maximising the likelihood (3), we can estimate the parameters of
the model.

Information criteria (i.e. AIC) can be calculated based on (3).

One of the options – estimate different distribution models and
select the best for your data.

Compare mixture distribution with the normal linear regression?
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Mixture distribution model

The forecast of the demand sizes: ẑt = µz,t

The forecast of the demand occurrence: p̂t =
µp,t

1+µp,t

The final point forecast (conditional mean) is: ŷt = p̂tẑt

Bonus: parametric prediction intervals.
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Simulation setting

The data simulated from mixture of Logistic and LogNormal

• 1000 weekly series;

• 208 observations: 156 in-sample, 52 holdout;

• Random number of zeroes between 10 and 42 for each period;

• Fixed origin;

• Deterministic seasonality;

• Promotions;

• Rounded up values.
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Simulation setting

Series like this:
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The models

Models included:

alm() function from greybox package v0.5.2 for R.

• Benchmark: normal linear regression
(distribution="dnorm");

• Normal + logistic (distribution="dnorm",
occurrence="plogis");

• Log normal + logistic (distribution="dlnorm",
occurrence="plogis");
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The models
Silly benchmarks:

• Negative binomial + logistic (distribution="dnbinom",
occurrence="plogis");

• Poisson + logistic (distribution="dpois",
occurrence="plogis");

• Model selected using AIC.

• ETSX(A,N,N) (es() from smooth package for R) – just for
fun...

• iETSI (es() from smooth) – because Nikos asked...

Dummies for weeks as explanatory variables + promotions.

Produce mean forecasts and the upper bounds.
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The evaluation

Forecasts evaluation:

• Relative RMSE for point forecasts:

RelRMSE =
RMSEa
RMSEb

, (4)

where

RMSE =

√√√√1

h

h∑
j=1

(yt+j − ŷt+j)2 (5)
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The evaluation

Forecasts evaluation:

• Relative Mean Interval Score (MIS, inspired by Gneiting and
Raftery, 2007);

RelMIS =
MISa
MISb

, (6)

where MIS = 1
h

∑h
j=1 IS and

IS = (ut+j − lt+j) + 2
α(lt+j − yt+j)1{yt+j < lt+j}+

2
α(yt+j − ut+j)1{yt+j > ut+j}

, (7)

Using a normal regression with intercept (average of the series) as
a benchmark.
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The simulation results

Methods
Mean values Median Values

RelRMSE RelMIS RelRMSE RelMIS

Normal 0.809 0.769 0.802 0.781
MixNormal 0.793 0.953 0.783 0.940
MixLogNormal 0.777 1.011 0.768 1.003
MixPoisson 0.796 1.453 0.780 1.467
MixNBinom 0.798 0.934 0.786 0.938
Selection 0.793 0.921 0.784 0.931
ETSX 0.850 0.881 0.858 0.904
iETSI 1.073 1.654 1.021 1.278
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The simulation results. MCB on RelRMSE

The p−value from the significance test is 0.000.
95% confidence intervals constructed.
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The simulation results. MCB on RelMIS

The p−value from the significance test is 0.000.
95% confidence intervals constructed.
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The real data experiment

An experiment on a real data

• Tomato sales data;

• Weekly;

• 261 observations: 209 in-sample, 52 for the holdout;

• Fixed origin;

• 24 products that have non-zeroes in the holdout;
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The real data results

Methods
Mean values Median Values

RelRMSE RelMIS RelRMSE RelMIS

Normal 0.763 0.799 0.757 0.776
MixNormal 0.778 0.830 0.770 0.645
MixLogNormal 0.775 0.865 0.763 0.670
MixPoisson 0.778 1.309 0.773 1.328
MixNBinom 0.778 0.770 0.761 0.643
Selection 0.779 0.766 0.760 0.639
ETSX 0.818 0.858 0.810 0.798
iETS 1.414 3.787 1.445 3.399
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The real data results. MCB on RelRMSE

The p−value from the significance test is 0.000.
95% confidence intervals constructed.
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The real data results. MCB on RelMIS

The p−value from the significance test is 0.000.
95% confidence intervals constructed.
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Conclusions

• Regression approach is reasonable for retail data;

• Normal linear regression seems to work okay;

• Using mixture distribution models is a promising direction;

• We need more data!

• We really need more data!

• And explanatory variables!

• Add AR, I, MA components;

• Variables / model selection.
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The simulation results expanded

Methods
Mean values Median Values

Coverage RelRange Coverage RelRange

Normal 0.930 0.728 0.942 0.731
MixNormal 0.891 0.469 0.904 0.483
MixLogNormal 0.873 0.461 0.885 0.476
MixPoisson 0.789 0.337 0.808 0.347
MixNBinom 0.888 0.510 0.904 0.524
Selection 0.891 0.506 0.904 0.568
ETSX 0.924 0.715 0.923 0.721
iETSI 0.812 0.648 0.885 0.728
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