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Abstract

Exponential smoothing has been one of the most popular forecasting meth-
ods used to support various decisions in organisations, in activities such as
inventory management, scheduling, revenue management and other areas.
Although its relative simplicity and transparency have made it very attrac-
tive for research and practice, identifying the underlying trend remains chal-
lenging with significant impact on the resulting accuracy. This has resulted
in the development of various modifications of trend models, introducing a
model selection problem. With the aim of addressing this problem, we pro-
pose the Complex Exponential Smoothing (CES), based on the theory of
functions of complex variables. The basic CES approach involves only two
parameters and does not require a model selection procedure. Despite these
simplifications, CES proves to be competitive with, or even superior to ex-
isting methods. We show that CES has several advantages over conventional
exponential smoothing models: it can model and forecast both stationary
and non-stationary processes, and CES can capture both level and trend
cases, as defined in the conventional exponential smoothing classification.
CES is evaluated on several forecasting competition datasets, demonstrating
better performance than established benchmarks. We conclude that CES has
desirable features for time series modelling and opens new promising avenues
for research.
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1. Introduction1

Effective forecasting is an essential prerequisite to logistics and operations2

planning. Such forecasting exercises focus not only on expected levels of3

demand but also on the amount of stock required. This is true for various4

prescriptive analytics tasks. Ideally, a forecaster will produce a prediction5

distribution that may be used in planning decisions using, for example, a6

newsvendor model.7

There are several important elements that must be considered in this8

process:9

• There may be a large number of items to be considered;10

• The available time series for any given item may be short;11

• The planning process will often focus on the upper tail of the prediction12

distribution.13

These factors influence the approach taken to forecasting in the following14

ways. A large number of time series, that can in practice reach even several15

hundred thousand (for example, in retailing Fildes et al., 2019), makes the16

automatic generation of forecast desirable. Forecasting systems typically of-17

fer some automatic model specification capabilities, where the performance18

and reliability of the specification and selection of forecasting models are cru-19

cial. The pool of models, from which this selection is done, depends on the20

length of time series, and the capabilities of the supporting software, among21

other factors. The limited data can restrict the pool to simpler models that22

have fewer parameters to estimate. Similarly, simple models are common-23

place in practice as many companies still rely on spreadsheet software for24

any analysis that do not offer advanced statistical capabilities. These have25

contributed to the wide use of exponential smoothing in many application26

areas.27

Even though the recent M5 forecasting competition (Makridakis et al.,28

2021) showed that Machine Learning (ML) can be very effective for short-29

term forecasting, these methods remain incompatible with many forecasting30

problems. ML methods require a substantial training sample, which in many31
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cases translates to long time series. Moreover, even though advances in com-32

puting have increased the training speed of ML methods, identifying the33

correct specification and hyper-parameters remains a very computationally34

intensive and demanding process. This, together with the limited capaci-35

ties of software in companies for advanced methods has stymied the spread36

of ML in practice. Further, the M5 forecasting competition results demon-37

strate that in terms of inventory performance, more complicated forecasting38

approaches do not differ from the simpler ones (Spiliotis et al., 2021). It39

should also be noted that a lot of the ML entries in the competition failed40

to out-perform even the most basic time series procedures, exemplifying the41

difficulty to correctly specify ML methods. Although we cannot use these42

findings to make a general statement, it does support the continued use of43

well-researched statistical methods in many business applications.44

Nonetheless, when it comes to statistical models, they assume some error45

process that is independent of the signal. This is motivated by mathemat-46

ical convenience but rarely holds in reality. Forecasting models will only47

approximate the process underlying real data, and although “All models are48

wrong, but some are useful” (G. Box), the information in forecast errors is49

often ignored. This suggests that the residuals generated by a model may50

contain useful information that can provide feedback to improve subsequent51

forecasts.52

Given these observations, the purpose of this paper is to develop a fore-53

casting procedure that is parsimonious in terms of the number of parameters54

to be estimated, does not require model selection, eliminating both the com-55

plexity and the potential errors it introduces, and enables any information56

in the error estimates to feed back into subsequent forecasts.57

The rest of the article is structured as follows. We provide a literature58

review in Section 2, then we introduce the Complex Exponential Smoothing59

(CES) in Section 3. Within that section the properties of CES and con-60

nections with existing models are discussed. Finally, we benchmark CES61

against established statistical models using real cases in Section 4, which is62

then followed by concluding remarks.63

2. Literature Review64

Exponential smoothing is a very successful group of forecasting meth-65

ods which has been widely explored in theoretical research (for examples66

see Brown et al., 1961; McKenzie, 1986; Chen et al., 2000; Kim and Ryan,67
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2003; Zhu and Thonemann, 2004; Jose and Winkler, 2008; Kolassa, 2011;68

Wang et al., 2012; Athanasopoulos and de Silva, 2012; Rostami-Tabar et al.,69

2013) and used in practice (Fildes et al., 1998; Makridakis and Hibon, 2000;70

Gardner and Diaz-Saiz, 2008; Athanasopoulos et al., 2011).71

The exponential smoothing methods were well known and popular amongst72

practising forecasters for almost half a century, originating in the work by73

Brown (1956). Hyndman et al. (2002), based on work by Snyder (1985)74

and Ord et al. (1997), embedded exponential smoothing within a state space75

framework, providing its statistical rationale, resulting in the ETS model76

(short for “Error, Trend and Seasonality”), which supports 30 models with77

different types of Error, Trend and Seasonal components. These may be78

None (N), Additive (A), Multiplicative (M), and for the trend the letter d79

is used to signify a damped trend. For example, ETS(A,N,A) would denote80

the model with additive error term, no trend and additive seasonality. An81

interested reader is referred to the textbook of Hyndman et al. (2008). ETS82

provides a systematic framework to estimate parameters, construct predic-83

tion intervals and choose between different types of exponential smoothing.84

The model selection in ETS framework relies on information criteria, such85

as Akaike Information Criterion (Akaike, 1974):86

AIC = 2k + 2`(θ), (1)

where k is the number of estimated parameters and `(θ) is the log-likelihood87

function calculated for the data based on the vector of parameters θ. The88

ETS approach implies that all the possible ETS models are fit to the data,89

and the one with the lowest AIC is selected and then used for forecasting.90

This allows for substantial improvements in automating its use, particularly91

in terms of parameter estimation and model form selection (Hyndman et al.,92

2008). The framework has been widely used since, in different modifications93

of exponential smoothing (Gould et al., 2008; De Livera et al., 2011; Koehler94

et al., 2012; Taylor and Snyder, 2012; Kourentzes et al., 2014; Guo et al.,95

2016).96

While ETS is widely used, recent research has demonstrated that it is97

possible to improve upon it. The literature shows that various combinations98

of exponential smoothing models result in composite ETS forms beyond the99

30 standard forms (Hyndman et al., 2008), which leads to improvement in100

forecast accuracy (Kolassa, 2011; Kourentzes et al., 2014), with apparent101

implications for practice. The results of Kolassa (2011) imply that selecting102
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the most appropriate ETS model is a challenging task. We argue that on103

the one hand models in the existing taxonomy do not cover all the possible104

forms; and on the other hand, this large diversity of models complicates the105

selection of the appropriate one. A further complicating factor for ETS is106

the assumption that any time series can be decomposed into several distinct107

components, namely level, trend and seasonality. In particular separating108

the level and trend of the time series presents several difficulties, as the com-109

ponents are not observable and their interpretation is elusive. For example110

the level component is non-stationary and can produce long term increases111

in a time series, much like a trend, complicating the separation between the112

two. The ETS framework suggests the existence of 5 types of alternative113

trend components, and selecting the most appropriate can be a challenging114

task and highly depends on the selection methodology used. Although in115

the original introduction of exponential smoothing the separation between116

level and trend was advantageous (Holt, 2004), the subsequent introduction117

of diverse trend alternatives opened a more difficult discussion of model se-118

lection (Hyndman et al., 2002). Kourentzes et al. (2014) showed that the119

complexity in identifying the presence and type of trend often results in120

misidentification and poorly performing long-term forecasts. Barrow et al.121

(2020) provide evidence that even when the ETS components are appropri-122

ately identified, the estimated smoothing parameters and the implied weight123

distribution (see Section 3.1) can result in poor forecasts, suggesting these as124

areas for improvement. Our motivation in this paper is to try to avoid this125

artificial distinction.126

We propose a new model that eliminates the arbitrary distinction between127

level and trend components, involves only two parameters and effectively128

sidesteps the model selection procedure. We encode the observed value of a129

time series together with the error term as a complex variable, giving rise130

to the proposed Complex Exponential Smoothing (CES). We demonstrate131

that CES has several desirable properties in terms of modelling flexibility132

over conventional exponential smoothing and demonstrate its superior per-133

formance empirically, making the use of complex variables instrumental. The134

key advantage of CES is that it can model both stationary and non-stationary135

time series, while conventional ETS is restricted to non-stationary time se-136

ries. Furthermore, CES smoothly transitions between the two cases, avoiding137

discontinuous changes, as imposed by the ARIMA modelling framework. We138

view the proposed CES as a promising extension to the established expo-139

nential smoothing framework, which given its prevalence in fields such as140
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forecasting, in both research and practice, has direct implications for prac-141

tice.142

3. Complex Exponential Smoothing143

3.1. Method and model144

Using the complex valued representation of time series, we propose the145

Complex Exponential Smoothing (CES) in analogy to the conventional ex-146

ponential smoothing methods. Consider the simple exponential smoothing147

method:148

ŷt = αyt−1 + (1− α)ŷt−1, (2)

where α is the smoothing parameter and ŷt is the estimated value of series.149

The same method can be represented as a weighted average of previous actual150

observations if we substitute ŷt−1 by the formula (2) with an index t − 1151

instead of t (Brown, 1956):152

ŷt = α
t−1∑
j=1

(1− α)j−1yt−j. (3)

The idea of this representation is to demonstrate how the weights α(1−α)j−1153

are distributed over time in our sample. If the smoothing parameter α ∈154

(0, 1) then the weights decline exponentially with the increase of j. If it lies155

in the so called “admissible bounds” (Brenner et al., 1968), that is α ∈ (0, 2),156

then the weights decline in oscillating manner. Both traditional and admis-157

sible bounds have been used efficiently in practice and in academic literature158

(for application of the latter see for example Gardner and Diaz-Saiz, 2008;159

Snyder et al., 2017). However, in real life the distribution of weights can be160

more complex, with harmonic rather than exponential decline, meaning that161

some of the past observation might have more importance than the recent162

ones. In order to implement such distribution of weights, we build upon (3)163

and introduce complex dynamic interactions by substituting the real vari-164

ables with the complex ones in (3). First, we substitute yt−j by the complex165

variable yt−j + iet−j, where et is the error term of the model and i is the166

imaginary unit (which satisfies the equation i2 = −1). The idea behind this167

is to have the impact of both actual values and the error on each observation168

in the past on the final forecast. Second, we substitute α with a complex169

variable α0 + iα1 and 1 by 1 + i to introduce the harmonically declining170
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weights. Depending on the values of the complex smoothing parameter, the171

weights distribution will exhibit a variety of trajectories over time, including172

exponential, oscillating and harmonic. Finally, the result of multiplication of173

two complex numbers will be another complex number, so we substitute ŷt−j174

with ŷt−j + iêt−j, where êt−j is the proxy for the error term. The Complex175

Exponential Smoothing obtained as a result of this can be written as:176

ŷt + iêt = (α0 + iα1)
t−1∑
j=1

(1 + i− (α0 + iα1))
j−1 (yt−j + iet−j). (4)

Having arrived to the model with harmonically distributed weights, we can
now move to the shorter form by substituting

ŷt−1 + iêt−1 = (α0 + iα1)
t−1∑
j=2

(1 + i− (α0 + iα1))
j−1 (yt−j + iet−j)

in (4) to get:177

ŷt + iêt = (α0 + iα1)(yt−1 + iet−1) + (1− α0 + i− iα1)(ŷt−1 + iêt−1). (5)

Note that êt is not interesting for the time series analysis and forecasting178

purposes, but is used as a vessel containing the information about the previ-179

ous errors of the method. Having the complex variables instead of the real180

ones in (5), allows taking the exponentially weighted values of both actuals181

and the forecast errors. By changing the value of α0 + iα1, we can regulate182

what proportions of the actual and the forecast error should be carried out183

to the future in order to produce forecasts.184

Representing the complex-valued function as a system of two real-valued185

functions leads to:186

ŷt = (α0yt−1 + (1− α0)ŷt−1)− (α1et−1 + (1− α1)êt−1)

êt = (α1yt−1 + (1− α1)ŷt−1) + (α0et−1 + (1− α0)êt−1)
. (6)

CES introduces an interaction between the real and imaginary parts, and the187

equations in (6) are connected via the previous values of each other, causing188

interactions over time, defined by complex smoothing parameter value.189

But the method itself is restrictive and does not allow easily producing190

prediction intervals and deriving the likelihood function. It is also impor-191

tant to understand what sort of statistical model underlies CES. This model192
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can be written in the following state space form (see Appendix A for the193

derivation):194

yt = lt−1 + εt

lt = lt−1 − (1− α1)ct−1 + (α0 − α1)εt

ct = lt−1 + (1− α0)ct−1 + (α0 + α1)εt

, (7)

where εt is the white noise error term, lt is the level component and ct is the195

non-linear trend component at observation t. Observe that dependencies in196

time series have an interactive structure and no explicit trend component is197

present in the time series as this model does not need to artificially break198

the series into level and trend, as ETS does. Although we call the ct compo-199

nent as “non-linear trend”, it does not correspond to the conventional trend200

component, because it contains the information of both previous ct−1 and201

the level lt−1. Also, note that we use εt instead of et in (7), which means202

that the CES has (7) as an underlying statistical model only when there is203

no misspecification error. In the case of the estimation of this model, the εt204

will be substituted by et, which will then lead us to the original formulation205

(5).206

This idea allows rewriting (7) in a shorter more generic way, resembling207

the general Single Source of Error (SSOE) state space framework:208

yt = w′vt−1 + εt

vt = Fvt−1 + gεt
, (8)

where vt =

(
lt
ct

)
is the state vector, F =

(
1 −(1− α1)
1 1− α0

)
is the transi-209

tion matrix, g =

(
α0 − α1

α0 + α1

)
is the persistence vector and w =

(
1
0

)
is the210

measurement vector.211

The state space form (8) permits extending CES in a similar ways to ETS212

to include additional states for seasonality or exogenous variables. The main213

difference between model (8) and the conventional ETS is that the transi-214

tion matrix in (8) includes smoothing parameters which is not a standard215

feature of ETS models. Furthermore persistence vector includes the inter-216

action of complex smoothing parameters, rather than smoothing parameters217

themselves.218

The error term in (7) is additive, so the likelihood function for CES is219

trivial and is similar to the one in the additive exponential smoothing models220
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(Hyndman et al., 2008, p.68):221

L(g,v0, σ
2|Y) =

(
1

σ
√

2π

)T
exp

(
−1

2

T∑
t=1

(εt
σ

)2)
, (9)

where v0 is the vector of initial states, σ2 is the variance of the error term222

and Y is the vector of all the in-sample observations.223

3.2. Stationarity and stability conditions for CES224

In order to understand the properties of CES, we need to study its sta-225

tionarity and stability conditions. The former holds for general exponential226

smoothing in the state space form (8) when all the eigenvalues of F lie inside227

the unit circle (Hyndman et al., 2008, p.38). CES can be either stationary228

or not, depending on the complex smoothing parameter value, in contrast to229

ETS models that are always non-stationary. Calculating eigenvalues of F for230

CES gives the following roots:231

λ =
2− α0 ±

√
α2
0 + 4α1 − 4

2
. (10)

If the absolute values of both roots are less than 1 then the estimated CES232

is stationary.233

When α1 > 1 one of the eigenvalues will always be greater than one.234

In this case both eigenvalues will be real numbers and CES produces a non-235

stationary trajectory. When α1 = 1, CES becomes equivalent to ETS(A,N,N).236

Finally, the model becomes stationary when (see Appendix C):237 
α1 < 5− 2α0

α1 < 1

α1 > 1− α0

. (11)

Note that we are not restricting CES with the conditions (11), we merely238

show, how the model will behave depending on the value of the complex239

smoothing parameter. This property of CES means that it is able to model240

either stationary or non-stationary processes, without the need to switch241

between them. The property of CES for each separate time series depends242

on the value of the smoothing parameters.243
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The other important property that arises from (7) is the stability condi-244

tion for CES. With εt = yt − lt−1 the following is obtained:245

yt = lt−1 + εt(
lt
ct

)
=

(
1− α0 + α1 −(1− α1)
1− α0 − α1 1− α0

)(
lt−1
ct−1

)
+

(
α0 − α1

α1 + α0

)
yt
. (12)

The matrix D =

(
1− α0 + α1 −(1− α1)
1− α0 − α1 1− α0

)
is called the discount matrix246

and can be written in the general form:247

D = F− gw′. (13)

The model is said to be stable if all the eigenvalues of (13) lie inside the248

unit circle. This is more important condition than the stationarity for the249

model, because it ensures that the complex weights decline over time and250

that the older observations have smaller weights than the new ones, which is251

one of the main features of the conventional ETS models. The eigenvalues252

are given by the following formula:253

λ =
2− 2α0 + α1 ±

√
8α1 + 4α0 − 4α0α1 − 4− 3α2

1

2
. (14)

CES will be stable when the following system of inequalities is satisfied (see254

Appendix D):255 
(α0 − 2.5)2 + α2

1 > 1.25

(α0 − 0.5)2 + (α1 − 1)2 > 0.25

(α0 − 1.5)2 + (α1 − 0.5)2 < 1.5

. (15)

Both the stationarity and stability regions are shown in Figure 1. The256

stationarity region (11) corresponds to the triangle. All the combinations257

of smoothing parameters lying below the curve in the triangle will produce258

the stationary harmonic trajectories, while the rest lead to the exponential259

trajectories. The stability condition (15) corresponds to the dark region. The260

stability region intersects the stationarity region, but in general stable CES261

can produce both stationary and non-stationary forecasts.262

3.3. Conditional mean and variance of CES263

The conditional mean of CES for h steps ahead with known lt and ct can264

be calculated using the state space model (7):265

E (yt+h|vt) = w′Fh−1vt, (16)
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Figure 1: Stability (the black area) and stationarity (the light triangle) regions of CES,
derived from the state space form (7).

where E(yt+h|vt) = ŷt+h, while F and w are the matrices from (8).266

The forecasting trajectories of (16) will differ depending on the values267

of lt, ct and the complex smoothing parameter. The analysis of stationarity268

condition shows that there are several types of forecasting trajectories of CES269

depending on the particular value of the complex smoothing parameter:270

1. When α1 = 1 all the values of forecast will be equal to the last obtained271

forecast, which corresponds to a flat line. This trajectory is shown in272

Figure 2a.273

2. When α1 > 1 the model produces trajectory with exponential growth274

which is shown in Figure 2b.275

3. When
4−α2

0

4
< α1 < 1 trajectory becomes stationary and CES produces276

exponential decline shown in Figure 2c.277

4. When 1 − α0 < α1 <
4−α2

0

4
trajectory becomes harmonic and will con-278

verge to zero (see Figure 2d).279

5. Finally, when 0 < α1 < 1 − α0 the diverging harmonic trajectory is280

produced, the model becomes non-stationary. This trajectory is of no281

use in forecasting, that is why we do not show it on graphs.282

Using (7) the conditional variance of CES for h steps ahead with known lt283

and ct can be calculated similarly to the pure additive ETS models (Hyndman284

et al., 2008, p.96).285
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Figure 2: Forecasting trajectories.

3.4. Connection with other forecasting models286

3.4.1. Underlying ARMA model287

All the pure additive exponential smoothing models have equivalent un-288

derlying ARIMA models. For example, ETS(A,N,N) has underlying ARIMA(0,1,1)289

model (Gardner, 1985). It can be shown that CES can be written in the form290

of ARMA(2,2) model (see Appendix B for the derivations):291 {
(1− φ1B − φ2B

2)yt = (1− θ1,1B − θ1,2B2)εt

(1− φ1B − φ2B
2)ξt = (1− θ2,1B − θ2,2B2)εt

, (17)

where ξt = εt − ct−1, φ1 = 2 − α0, φ2 = α0 + α1 − 2, θ1,1 = 2 − 2α0 + α1,292

θ1,2 = 3α0 + α1 − 2− α2
0 − α2

1, θ2,1 = −2 + α1 and θ2,2 = α0 − α1 − 2.293

The coefficients of AR terms of this model are connected with the coeffi-294

cients of MA terms, via the complex smoothing parameter. This connection295

is non-linear and imposes restrictions on the AR terms plane. Figure 3296

demonstrates how the invertibility region restricts the AR coefficients field.297

The triangle on the plane corresponds to the stationarity condition of AR(2)298

models, while the dark area demonstrates the invertibility region of CES.299
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Figure 3: Invertibility (the black area) and stationarity (the light triangle) regions of CES
on the plane of AR coefficients.

Note that exponential smoothing models are non-stationary in their na-300

ture, but it is crucial for them to be stable or at least forecastable (Ord301

et al., 1997). Thus we do not impose the stationarity condition on CES.302

Also, the stability condition of ETS corresponds to the invertibility condi-303

tion for ARIMA, which is preferred in CES framework. This means that CES304

will produce both stationary and non-stationary trajectories, depending on305

the complex smoothing parameter value. This transition between different306

types of processes happens naturally in the model without the need of model307

selection procedure. For example, the similar stability condition on the same308

plane for ETS(A,N,N) corresponds to the point with the coordinates (1,0)309

while for ETS(A,Ad,N) it corresponds to the line φ2 = 1 − φ1 restricted by310

the segment φ1 ∈ (1, 2).311

3.4.2. Simple exponential smoothing (SES)312

The additional properties of CES become obvious after regrouping the313

elements of (6):314 {
ŷt = ŷt−1 + α0et−1 − α1et−1 − (1− α1)êt−1
êt = ŷt−1 + α1et−1 + α0et−1 + (1− α0)êt−1

. (18)

When α1 is close to 1 the influence of êt on ŷt becomes minimal and the315

second smoothing parameter α0 in (18) behaves similarly to the smoothing316
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parameter in SES: α0− 1 in CES corresponds to α in SES. For example, the317

value α0 = 1.24 in CES will be equivalent to α = 0.24 in SES.318

Similar conclusions can be made by comparing ETS(A,N,N), which un-319

derlies SES, and CES in state space form (7), assuming that α1 = 1, which320

leads to:321

yt = lt−1 + εt

lt = lt−1 + (α0 − 1)εt

ct = lt−1 + (1− α0)ct−1 + (α0 + 1)εt

. (19)

The data generated using (19) will resemble the one generated using ETS(A,N,N).322

The insight from this is that when the series is stationary and the optimal323

smoothing parameter in SES should be close to zero, the optimal α0 in CES324

will be close to one. At the same time the real part of the complex smoothing325

parameter will become close to 2 when the series corresponds to the random326

walk process.327

3.5. Seasonal CES model328

In order to make CES widely applicable, we also introduce a seasonal329

modification of the model. The simplest way to derive a seasonal model330

using CES is to use values of the level and non-linear trend components331

with a lag t − m instead of t − 1. This is similar to the reduced seasonal332

exponential smoothing forms by Snyder and Shami (2001). In order to model333

both seasonal and non-seasonal parts we extend the original model (7) with334

a seasonal model, leading to the following seasonal CES model:335

yt = l0,t−1 + l1,t−m + εt

l0,t = l0,t−1 − (1− α1)c0,t−1 + (α0 − α1)εt

c0,t = l0,t−1 + (1− α0)c0,t−1 + (α0 + α1)εt

l1,t = l1,t−m − (1− β1)c1,t−m + (β0 − β1)εt
c1,t = l1,t−m + (1− β0)c1,t−m + (β0 + β1)εt

. (20)

Model (20) can still be written in a conventional state-space form (8).336

It exhibits several differences from conventional smoothing seasonal mod-337

els. First, the proposed seasonal CES model in (20) does not have a set338

of usual seasonal components as the ordinary exponential smoothing mod-339

els do, which means that there is no need to renormalise them. The val-340

ues of l1,t and c1,t correspond to estimates of past level and non-linear trend341

components and have more common features with seasonal ARIMA (Box342
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et al., 2015, p.300) than with the conventional seasonal exponential smooth-343

ing models. Second, it can be shown that the seasonal CES has an underlying344

model that corresponds to SARIMA(2, 0, 2m+2)(2, 0, 0)m (see Appendix E),345

which can be either stationary or not, depending on values of the complex346

smoothing parameters, similar to Subsection 3.4.1.347

The seasonal CES can produce non-linear seasonality, i.e., the seasonal348

amplitude might increase or decreases in a non-linear fashion based on val-349

ues of parameters, and all the possible types of trends discussed above, as350

the original level component l0,t can become negative while the lagged level351

component l1,t may become strictly positive. Furthermore, this model retains352

the property of independence of the original level and lagged level compo-353

nents, so it can model a multiplicative (or other) shape seasonality in the354

data even when the level of the series does not change. This could happen355

for example when the seasonality is either non-linear or when some other356

variable is determining its evolution, as for example in the case with solar357

power generation (Trapero et al., 2015).358

When it comes to the estimation of this model, this can be done using359

the same principles as discussed earlier, while the stability condition can be360

checked by making sure that all the eigenvalues of the following discount361

matrix lie inside the unit circle:362

D =


1− α0 + α1 α1 − 1 α1 − α0 0
1− α0 − α1 1− α0 −α1 − α0 0
β1 − β0 0 1− β0 + β1 β1 − 1
−β1 − β0 0 1− β0 − β1 1− β0

 (21)

The restrictions on parameters become more complicated than in the case of363

the non-seasonal model and cannot be easily analysed.364

Finally, using the likelihood (9), the Akaike Information Criterion for both365

seasonal and non-seasonal CES models can be calculated based on formula366

(1). For the non-seasonal model (7), the number of estimated parameters k is367

equal to 5 (2 complex smoothing parameters, 2 initial states and 1 variance of368

the residuals), while, for the seasonal model, it becomes much greater than in369

the original model: k = 4+2m+2+1, which is 4 smoothing parameters, 2m370

initial lagged values, 2 initial values of the generic level and non-linear trend371

and 1 estimate of the variance. The flexibility of the model (20) comes at372

the cost of an increased number of parameters and AIC can help to identify373

whether this extra flexibility is beneficial or not. Naturally, other information374

criteria can be used.375
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Figure 4: Stationary and trended time series. The vertical line indicates the start of the
holdout sample

Observe that the model selection problem for CES is reduced to choosing376

only between non-seasonal and seasonal variants, instead of the multiple377

model forms with conventional ETS.378

4. Empirical results379

In this section we provide two examples of the application of CES on real380

data, followed by a large empirical evaluation, comparing its performance381

against established time series model benchmarks.382

4.1. Examples of application383

To demonstrate the use of CES we use two real time series from the M3-384

Competition (Makridakis and Hibon, 2000). The first one (number 1664) is385

shown in Figure 4a and the second one (number 2721) is shown in Figure 4b.386

Graphical analysis, the Augmented Dickey–Fuller (ADF, Dickey and Fuller,387

1979) and the Kwiatkowski– Phillips-Schmidt-Shin (KPSS, Kwiatkowski et al.,388

1992) tests suggest that the first series is stationary (Figure 4a), while the389

second one is non-stationary (Figure 4b), exhibiting a clear trend. The time390

series are split into in-sample and holdout subsets, as indicated in the figures391

with a vertical line.392

Estimation of CES (using ces() function from the smooth package for R,393

Svetunkov, 2021b) on the first time series results in the complex smoothing394

parameter α0 + iα1 = 0.99999 + 0.99884i. All the roots of the character-395

istic equation for this complex smoothing parameter lie outside the unit396

circle and inequality (11) is satisfied, which means that the model pro-397

duces a stationary trajectory. CES was able to identify that the series is398
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stationary. The values of the parameters of ARMA, based on (17) are:399

φ1 = 1.00001, φ2 = −0.00116, θ1,1 = 0.99884, θ1,2 = 0.00116, which corre-400

spond to the stationary ARMA (the roots of the equation lie outside the401

unit circle) with long memory (the sum of the MA parameters is very close402

to one). Fitted values, point forecasts and 95% prediction intervals are pro-403

vided in Figure 4a. All observations in the holdout sample lie in the 95%404

prediction interval.405

For the second time series the complex smoothing parameter is α0+iα1 =406

1.48098 + 1.00346i. In this case, the forecast of CES is influenced by a larger407

number of observations, compared to the first time series. There are several408

roots of characteristic equation lying inside the unit circle and the imaginary409

part of the complex smoothing parameter is greater than one, indicating410

that the model is non-stationary and that the bigger portion of the error411

term is taken into account when fitting the model. The respective values of412

the ARMA from (17) are: φ1 = 0.51902, φ2 = 0.48444, θ1,1 = 0.04150, θ1,2 =413

0.24616. These values correspond to the non-stationary ARMA (the sum of414

AR parameters is greater than one) with a shorter memory (the sum of MA415

parameters is relatively small). Fitted values, point forecasts and the 95%416

prediction intervals are provided in Figure 4b.417

These examples show that CES is capable of modelling both stationary418

and otherwise series, and that it can produce the appropriate forecasts with-419

out the need for a model selection procedure.420

4.2. The experimental setup421

In order to assess forecasting performance of CES we conduct an empirical422

evaluation on the M1 (Makridakis et al., 1982), M3 (Makridakis and Hibon,423

2000) and Tourism (Athanasopoulos et al., 2011) competitions datasets. In424

total there are 5315 time series of yearly, quarterly, monthly and unidentified425

(‘other’ in the M3 dataset) frequency. The forecast horizons for the datasets426

correspond to those originally used in the competitions with 6 steps ahead427

for the yearly, 8 steps ahead for the quarterly and other, and 18 steps ahead428

for the monthly subsets.429

We apply the auto.ces() function from the smooth package v3.1.2 (Sve-430

tunkov, 2021b, on CRAN) for R (R Core Team, 2021) 1. This function431

implements the CES model with the proposed AIC based selection between432

1Although we prefer to use R for data analysis, it should be noted that CES may also
be implemented in Excel, with model fitting using Solver. As the only model selection
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the seasonal and non-seasonal options. In order to see how CES performs,433

we also evaluate several benchmark methods:434

1. ETS – the exponential smoothing model with the model selection pro-435

cedure proposed by (Hyndman et al., 2002) using AICc implemented436

in es() function from smooth package for R with model="ZXZ";437

2. ARIMA – Automatic state space ARIMA (Svetunkov and Boylan,438

2020) via auto.ssarima() from smooth package for R;439

3. Theta – Theta method proposed by Assimakopoulos and Nikolopoulos440

(2000) and implemented in thetaf() function from forecast package441

v8.14 (Hyndman and Khandakar, 2008) for R;442

4. SCUM - Simple Combination of Univariate Models proposed by Petropou-443

los and Svetunkov (2020), combining ETS, ARIMA, Theta and CES444

via medians;445

5. SCUM(noCES) - As above but without including CES in the combina-446

tion.447

The first two are used to assess how CES compares with well established448

univariate benchmarks, while (3) is needed to see how CES compares with449

the winner of M3 competition. We also include the combination (4), which450

performed very well in the recent M4 competition (Makridakis et al., 2020)451

and (5) to see the role of CES in the combination.452

The forecasting performance is evaluated using three error measures:453

• RMSSE – Root Mean Squared Scaled Errors used in the M5 competi-454

tion (Makridakis et al., 2022):455

RMSSE = ∆̄−1y

√√√√1

h

h∑
j=1

(yt+j − ŷt+j)2, (22)

where ∆̄y = 1
t−1
∑t

j=2 |∆yj| is the mean absolute value of the first dif-456

ferences ∆yj = yj − yj−1 of the in-sample data and h is the forecast457

horizon. We use this measure as it relies on the Mean Squared Er-458

ror (MSE), which is minimised by the mean forecasts (Kolassa, 2020),459

which are produced by all the models under consideration.460

question is between the seasonal and non-seasonal forms, implementation in spreadsheet
is simpler than for ARIMA or ETS.
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• MASE – Mean Absolute Scaled Error (Hyndman and Koehler, 2006):461

MASE = ∆̄−1y
1

h

h∑
j=1

|yt+j − ŷt+j|, (23)

This is one of the standard error measures used in forecasting exper-462

iments. Relying on Mean Absolute Error (MAE), it is minimised by463

median rather than mean (Kolassa, 2020).464

• MSIS – Mean Scaled Interval Score:465

MIS =∆̄−1y
1

h

h∑
j=1

(
(ut+j − lt+j) +

2

α
(lt+j − yt+j)1{yt+j < lt+j}+

2

α
(yt+j − ut+j)1{yt+j > ut+j}

)
,

(24)

where 1{·} is the indicator function, ut+j is the upper bound and lt+j is466

the lower bound of the prediction interval and α is the significance level.467

We use 95% prediction interval in our estimation (α = 0.05). This is468

a scale independent version of the Mean Interval Score (Gneiting and469

Raftery, 2007), and it shows the overall performance of the prediction470

intervals of models for selected quantiles.471

We use the post-hoc Nemenyi test (Demšar, 2006), which relies on ranks of472

error measures. We use rmcb() function in the greybox package (Svetunkov,473

2021a) for R. This reveals, whether there is evidence that the reported dif-474

ferences in accuracy between forecasts are statistically significant.475

4.3. Results476

Table 1 reports the summarised mean and median errors across all time477

series in the datasets. Contrasting the mean and the median values provides478

more information about the overall performance of models, also providing479

some insights on the distribution of error measures: for all RMSSE, MASE,480

and MSIS we observe large differences between the two, suggesting the pres-481

ence of outlying errors. The best performing method in each column is482

highlighted in boldface. The combination approaches are distinguished from483

the other contestants and are compared separately.484

We see in Table 1 that CES outperforms other univariate models in terms485

of mean RMSSE and median values of RMSSE, MASE and MSIS. When it486
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Methods
Mean values Median Values

RMSSE MASE MSIS RMSSE MASE MSIS
CES 1.959 2.272 3.465 1.170 1.298 0.869
ETS 1.970 2.263 2.258 1.181 1.323 0.925
ARIMA 2.134 2.482 3.335 1.271 1.419 0.988
Theta 1.965 2.252 2.531 1.238 1.377 0.895
SCUM 1.867 2.146 2.333 1.128 1.256 0.844
SCUM(noCES) 1.911 2.191 2.223 1.143 1.279 0.859

Table 1: Error measures for M1, M3 and Tourism data

comes to the combination of models, SCUM does better in terms of mean and487

median RMSSE and MASE than SCUM(noCES) which does not included488

CES in the combination. This suggests that CES benefits the combination of489

the models, leading to improvements in accuracy. We argue that this happens490

because CES is able to capture long-term relations better than the other491

alternatives and can capture non-linear trends without a need to separate492

components into level and trend.493

The comparison of mean and median MSIS in Table 1 demonstrates that494

CES does well in many cases, but fails in some, producing much higher495

errors than the other forecasting approaches. This is due primarily to one496

time series from M1 competition, where CES failed to identify the trend, and497

as a result the MSIS was equal to 523.034, while that for ETS was 25.590.498

This time series with CES and ETS is shown in Figure 5.
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(a) CES applied to the data.
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(b) ETS applied to the data.

Figure 5: Performance of CES (α0 + iα1 = 2.108 + i1.118) and ETS(M,N,N) (α = 0.881)
on Series 47 from M1 dataset.

499

As we can see from Figure 5, the series exhibits an unpredictable in-500

crease of values in the holdout. In our experiment, none of the models man-501
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aged to capture it correctly, all of them underforecasted the data. However,502

the advantage of ETS in this situation was that the selected automatically503

ETS(M,N,N) model relied on multiplicative error and had a high smoothing504

parameter value, which resulted in an exploding prediction interval. While505

in many situations this would not be a suitable interval, but in this specific506

case it worked out better than the more conservative prediction interval of507

CES.508

RMSSE

SCUM

SCUM(noCES)

CES

ETS

Theta

ARIMA

MASE

SCUM

SCUM(noCES)

CES
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Theta

ARIMA

MSIS

SCUM

CES

SCUM(noCES)

Theta

ETS

ARIMA

Figure 6: The Nemenyi test on RMSSE, MASE and MSIS for the datasets. The models
are ordered based on their average ranks (the lower, the better).

In order to determine whether the observed accuracy differences between509

forecasts are statistically significant, we test them using the non-parametric510

Nemenyi tests. The results at 5% significance level are presented in Figure 6.511

In each panel of the Figure we rank the alternatives according to their mean512

rank (best at the bottom of the plot). For the forecasts that are connected513

with a vertical line there is no evidence of statistically significant differences514

at the 5% level. Note that there are multiple lines, depending on the forecast515

that one starts measuring from. Qualitatively the results for RMSSE and516

MASE are the same. CES ranks best when compared to all other univariate517

models, although the differences are not in all cases statistically significant.518

As expected, SCUM is significantly better than all the other approaches519

across all error measures, consistently outperforming SCUM(noCES). This520

means that CES does a significant contribution in the combination and is able521
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to capture complex relations in the data that are not captured by the other522

forecasting models. Furthermore, when it comes to MSIS, CES ranks second,523

outperforming all the univariate models and the combination forecasts of524

SCUM(noCES).525

Drawing overall conclusions from this experiment, CES is found to per-526

form well across different error measures and its inclusion in combination527

forecasts leads to significant improvements across all error measures.528

Having conducted the evaluation on M1, M3 and Tourism competition529

data, we also investigate the performance of the same set of models on the M4530

forecasting competition data (Makridakis et al., 2020). The dataset contains531

a variety of time series and the models were assessed on different forecast532

horizons. Of particular interest is the large variety of sampling frequencies533

in the data. Details are presented in Table 2.534

Type of data Yearly Quarterly Monthly Weekly Daily Hourly

Number of series 23,000 24,000 48,000 359 4,227 414
Forecast horizon 6 8 18 13 14 48

Table 2: Summary information of M4 data.

Several time series in the competition data exhibit extreme properties535

(see, Darin and Stellwagen, 2020; Ingel et al., 2020; Fildes, 2020), which536

caused the benchmark ETS to break down. This was due to influential537

outliers and structural breaks in the data. (Specifically, the time series 19357,538

43160, 51552, 62738, 92370, 92435, 93159, 93196, 93412, 93491) These cases539

were excluded. The performance of models is summarised in Table 3.540

Methods
Mean values Median Values

MASE RMSSE MSIS MASE RMSSE MSIS

CES 2.921 2.339 2.379 1.803 1.529 0.592
ETS 3.310 2.688 4.751 1.831 1.542 0.632
ARIMA 3.037 2.436 2.272 1.903 1.606 0.617
Theta 2.980 2.394 2.130 1.865 1.574 0.597

SCUM 2.737 2.198 1.751 1.742 1.475 0.568
SCUMnoCES 2.784 2.241 1.798 1.769 1.498 0.583

Table 3: Results from M4 competition, excluding series 19357, 43160, 51552, 62738, 92370,
92435, 93159, 93196, 93412, 93491.

As Table 3 demonstrates, CES outperforms all other models in terms541

of MASE and RMSSE. Furthermore, similar to the previous competition542
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results, SCUM does consistently better than the combination without CES.543

All of this shows that CES brings value and performs well in practice.544

4.4. Discussion545

To further investigate the performance of CES, we analyse subsets of546

the previous experiment, focusing on specific data characteristics. First, we547

apply several special cases of ETS models to the non-seasonal data from the548

datasets above. To identify the non-seasonal series we rely on the model549

selection done by the ETS via the es() function from the smooth package550

for R. The results with 3262 time series are summarised in Table 4. Note551

that CES in this experiment is selected automatically between the seasonal552

and non-seasonal ones using AICc.553

Methods
Mean values Median Values

RMSSE MASE MSIS RMSSE MASE MSIS
CES 2.534 2.949 4.269 1.654 1.880 0.863
ETS(ANN) 2.823 3.234 3.104 1.950 2.228 0.917
ETS(AAN) 2.670 3.095 3.785 1.694 1.919 0.907
ETS(AAdN) 2.502 2.907 3.769 1.660 1.863 0.854
ETS(MMN) 3.185 3.698 4.768 1.875 2.090 0.960
ETS(MMdN) 2.691 3.160 3.546 1.773 1.975 0.971

Table 4: Error measures for M1, M3 and Tourism data. Non-seasonal data. Comparison
with special cases of ETS. The best results are in boldface, the second best are in italic.

We observe that CES substantially outperforms the local level, ETS(A,N,N),554

and local linear trend, ETS(A,A,N), models. The flexibility of CES allows it555

to capture different trajectories that are not explicitly captured by the con-556

ventional level and trend classification of exponential smoothing. Further-557

more, it outperforms the multiplicative trend model, ETS(M,M,N), which558

produces exponential trajectories similar to the ones by CES, but is found to559

be less accurate than CES. This insight is in agreement with the two examples560

provided at the start of this section. It is lagging behind the damped trend561

model ETS(A,Ad,N) in terms of mean error measures, remaining second best562

in the majority of cases. The difference between the mean and median values563

for CES implies that it performed consistently well on the majority of series564

and failed on two of them, producing outlying errors.565

In addition, we explore performance in the remaining seasonal time se-566

ries (2053 time series). In this case, the ETS models allow for seasonality.567

Note that the split of the subset of the series was done according to ETS,568
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Methods
Mean values Median Values

RMSSE MASE MSIS RMSSE MASE MSIS
CES 1.044 1.196 2.188 0.756 0.844 0.877
ETS(ANA) 1.142 1.297 2.037 0.803 0.894 0.920
ETS(AAA) 1.135 1.295 2.247 0.802 0.877 0.934
ETS(AAdA) 1.094 1.245 2.155 0.797 0.876 0.946
ETS(MMM) 1.171 1.352 2.153 0.806 0.875 1.057
ETS(MMdM) 1.103 1.260 1.934 0.789 0.875 1.006

Table 5: Error measures for M1, M3 and Tourism data. Seasonal data. Comparison with
special cases of ETS. The best results are in boldface, the second best are in italic.

making these the optimally selected models, given any trend restrictions we569

have imposed. The results of this experiment are shown in Table 5. CES570

outperforms all ETS models in terms of RMSSE and MASE. In terms of571

mean MSIS ETS(M,Md,M) ranks first, while CES outperforms the rest on572

median MSIS. This subset of results shows that the proposed use of infor-573

mation criteria can effectively identify when to switch between seasonal and574

non-seasonal CES.575

5. Conclusions576

In this paper we proposed a new approach to time series modelling. In-577

stead of modelling only the observed value of series and decomposing it into578

several components, we use complex variables theory in order to connect the579

actual value and the forecast error. Our motivation in doing so is to provide580

the model with additional information about any potential misspecifications.581

Adopting this approach leads to the new model, the Complex Exponential582

Smoothing.583

CES is a flexible model that can produce different types of forecast tra-584

jectories, avoiding the arbitrary decomposition of time series into several585

components (level, trend, error), which is the basis of the ETS family of586

models. It encompasses both level and multiplicative trend processes and587

approximates additive trend well. One of the advantages of CES is that588

it gradually transitions from one trajectory to the other, depending on its589

complex smoothing parameter value. In contrast to exponential smooth-590

ing, which inspired the creation of CES, it can model both stationary and591

non-stationary time series. This simplifies greatly the forecasting process,592

as model selection between these cases is reduced to simply estimating the593

complex smoothing parameter of CES. This also overcomes the arbitrary594
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distinction between level and trend series done by conventional exponential595

smoothing and the resulting model selection.596

We show that CES has the form of an ARMA(2,2) model, but with-597

out the stationarity or stability requirements. The main difference between598

ARMA(2,2) underlying CES and the general ARMA(2,2) is that in CES599

framework the AR and MA parameters become connected with each other.600

This leads to a different parameter space and a different modelling of time601

series.602

We also develop a seasonal counterpart of CES model to make it applica-603

ble to a wide variety of data. The seasonal CES is capable of modelling and604

forecasting time series with both additive, multiplicative, and other types of605

seasonality, providing even more flexibility to CES. We also discuss the se-606

lection between the seasonal and non-seasonal CES models, for which using607

information criteria is our recommendation.608

Finally, CES is empirically shown to outperform ETS, ARIMA and Theta609

in terms of RMSSE. This validates that CES can be used efficiently to capture610

both level and trend time series, side-stepping the model selection problem611

in ETS, which forces abrupt changes between the various trend cases. The612

proposed model avoids this via a smooth transitions between them. We also613

evaluate the contribution of CES in the a combined forecast. We demonstrate614

that including CES in the forecast pool increases accuracy further. CES615

contributes to the combined forecasts due to its ability to capture long term616

trends and non-linear relations in the data.617

We do not claim that CES is appropriate for every single forecasting618

scenario. Nonetheless, we provide evidence that it is a robust approach. In619

this work we have focused on the foundations of the basic idea, building upon620

the additive error model. Future research should investigate the impact of621

sample size on performance of CES and the extension of CES to incorporate622

a multiplicative error term. Furthermore, CES diverges from the traditional623

ETS structure, being able to capture a wider variety of trend and season624

behaviours and therefore could bring potential benefits. This is attributed625

to the usage of complex variables theory in the original method. Future626

research can investigate other options for models based on theory of complex627

variables.628

Appendix A. State space form of CES629

Any complex variable can be represented as a vector or as a matrix:630
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z = a+ ib; z =

(
a
b

)
; z =

(
a −b
b a

)
. (A.1)

The general CES model (5) can be split into two parts: measurement and631

transition equations using (A.1):632

(
ŷt
êt

)
=

(
lt−1
ct−1

)
(
lt
ct

)
=

(
α0 −α1

α1 α0

)(
yt
et

)
+

((
1 −1
1 1

)
−
(
α0 −α1

α1 α0

))(
lt−1
ct−1

) (A.2)

Regrouping the elements of transition equation in (A.2) the following633

equation can be obtained:634 (
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+
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Grouping vectors of actual value and level component with complex smooth-635

ing parameter and then the level and non-linear trend components leads to:636

(
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)(
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)
−
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)(
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0
et

)
+

(
α0 −α1
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)(
yt − lt−1

0

). (A.4)

The difference between the actual value and the level in (A.4) is the637

forecast error: yt − lt−1 = et. If we consider the model that might generate638

the data for CES, then we should assume that there is no misspecification639

error, so that et = εt. Using this and making several transformations gives640

the following state space model:641
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Now if CES should be represented in the state space form with the SSOE642

then the measurement equation should also contain the same error term643

as the transition equation. Since the imaginary part of the measurement644

equation in (A.5) is unobservable, it does not contain any useful information645

for forecasting and can be discarded from the final state space model:646

yt = lt−1 + εt

lt = lt−1 − (1− α1)ct−1 − α1εt + α0εt

ct = lt−1 + (1− α0)ct−1 + α0εt + α1εt

. (A.6)

Appendix B. Underlying ARIMA647

The non-linear trend component can be calculated using the second equa-648

tion of (7), assuming et = εt, in the following way:649

ct−1 = − lt − lt−1 + (α1 − α0)εt
1− α1

. (B.1)

Inserting (B.1) into the third equation of (7) leads to:650

− lt+1 − lt + (α1 − α0)εt+1

1− α1

= lt−1−(1−α0)
lt − lt−1 + (α1 − α0)εt

1− α1

+(α0+α1)εt.

(B.2)
Multiplying both parts of (B.2) by −(1−α1) and taking one lag back results651

in:652

lt − lt−1 + (α1 − α0)εt =

− (1− α1)lt−2 + (1− α0)(lt−1 − lt−2 + (α1 − α0)εt−1)

− (1− α1)(α0 + α1)εt−1

. (B.3)

Opening the brackets, transferring all the level components to the left hand653

side and all the error terms and non-linear trend components to the right654

hand side and then regrouping the elements gives:655

lt−(2−α0)lt−1−(α0+α1−2)lt−2 = (α0−α1)εt−(α0−α2
0+α1−α2

1+α1−α0)εt−1.
(B.4)

27



Now making substitutions lt = yt+1− εt+1 in (B.4), taking one more lag back656

and regrouping the error terms once again leads to:657

yt − (2− α0)yt−1 − (α0 + α1 − 2)yt−2 =

εt − (2− 2α0 + α1)εt−1 − (3α0 + α1 − 2− α2
0 − α2

1)εt−2
. (B.5)

The resulting model (B.5) is ARMA(2,2):658

(1− φ1B − φ2B
2)yt = (1− θ1,1B − θ1,2B2)εt, (B.6)

where φ1 = 2 − α0, φ2 = α0 + α1 − 2, θ1,1 = 2 − 2α0 + α1 and θ1,2 = 3α0 +659

α1 − 2− α2
0 − α2

1.660

In a similar manner using (7) it can be shown that the imaginary part of661

the series has the following underlying model:662

(1− φ1B − φ2B
2)ξt = (1− θ2,1B − θ2,2B2)εt, (B.7)

where ξt = εt − ct−1, θ2,1 = 2 + α1 and θ2,2 = α0 − α1 − 2.663

Appendix C. Stationarity condition for CES664

The analysis of the equation (10) shows that the eigenvalues can be either665

real or complex. In the cases of the real eigenvalues they need to be less666

than one, so the corresponding forecasting trajectory can be stationary and667

exponentially decreasing. This means that the following condition must be668

satisfied:669 
∣∣∣∣∣2− α0 ±

√
α2
0 + 4α1 − 4

2

∣∣∣∣∣ < 1

α2
0 + 4α1 − 4 ≥ 0

. (C.1)

The first inequality in (C.1) leads to the following system of inequalities:670 

√
α2
0 + 4α1 − 4 > α0 − 4√
α2
0 + 4α1 − 4 < α0

−
√
α2
0 + 4α1 − 4 > α0 − 4

−
√
α2
0 + 4α1 − 4 < α0

. (C.2)
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The analysis of (C.2) shows that if α0 > 4, then the third inequality is671

violated and if α0 < 0, then the second inequality is violated. This means672

that the condition α0 ∈ (0, 4) is crucial for the stationarity of CES. This also673

means that the first and the forth inequalities in (C.2) are always satisfied.674

Furthermore the second inequality can be transformed into:675

α2
0 + 4α1 − 4 < α2

0, (C.3)

which after simple cancellations leads to:676

α1 < 1. (C.4)

The other important result follows from the third inequality in (C.2), which677

can be derived using the condition α0 ∈ (0, 4):678

α2
0 + 4α1 − 4 < (α0 − 4)2, (C.5)

which implies that:679

α1 < 5− 2α0, (C.6)

Uniting all these condition and taking into account the second inequality in680

(C.1), CES will produce a stationary exponential trajectory when:681 
0 < α0 < 4

α1 < 5− 2α0

4− α2
0

4
≤ α1 < 1

. (C.7)

The other possible situation is when the second part of the inequality682

(C.1) is violated, which will lead to the complex eigenvalues, meaning that683

the harmonic forecasting trajectory is produced. CES can still be stationary684

if both eigenvalues in (10) have absolute values less than one, meaning that:685 √
<(λ)2 + =(λ)2 < 1, (C.8)

where <(λ) is the real part and =(λ) is the imaginary part of λ. This means686

in its turn the satisfaction of the following condition:687 √√√√(2− α0

2

)2

+

(
i

√
|α2

0 + 4α1 − 4|
2

)2

< 1, (C.9)
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or:688

0 ≤ 4 + α2
0 − 4α0

4
− α2

0 + 4α1 − 4

4
< 1, (C.10)

which simplifying leads to:

1 < α0 + α1 ≤ 2,

or: {
α1 > 1− α0

α1 ≤ 2− α0

.

The full condition that leads to the harmonic stationary trajectory of CES689

is:690 
α1 <

4− α2
0

4
α1 > 1− α0

α1 ≤ 2− α0

. (C.11)

The first inequality in (C.11) can be rewritten as a difference of squares:691

α1 < (2− α0)
(2 + α0)

4
. (C.12)

Comparing the right hand part of (C.12) with the right hand side of the692

third inequality in (C.11) it can be shown that there is only one point, when693

both of these inequalities will lead to the same constraint: when α0 = 2.694

This is because the line α1 = 2 − α0 is a tangent line for the function α1 =695

(2 − α0)
(2+α0)

4
in this point. In all the other cases the right hand part of696

(C.12) will be less than the right hand side of the third inequality in (C.11).697

This means that the third inequality in (C.11) can be dropped:698 α1 <
4− α2

0

4
α1 > 1− α0

. (C.13)

Uniting (C.13) with (C.7) leads to the following general stationarity condi-699
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tion:700 

0 < α0 < 4

α1 < 5− 2α0

4− α2
0

4
≤ α1 < 1

α1 <
4− α2

0

4
α1 > 1− α0

. (C.14)

The third and fourth conditions can now be united. The first condition is701

always satisfied when conditions two and five are met (because the corre-702

sponding lines of these inequalities have an intersection in the point α0 = 4),703

so it can be removed. Finally, the following simpler condition can be used704

instead of (C.14):705 
α1 < 5− 2α0

α1 < 1

α1 > 1− α0

. (C.15)

Appendix D. Stability condition for CES706

The general ARMA(2,2) will be invertible when the following condition707

is satisfied:708 
θ2 + θ1 < 1

θ2 − θ1 < 1

θ2 > −1

θ2 < 1

. (D.1)

Due to (Hyndman et al., 2008, p.172 - 173) invertibility condition of ARIMA709

corresponds to stability condition of models in state space formulation. Fol-710

lowing from subsection 3.4.1, inserting the parameters from ARMA (17) un-711

derlying CES, the following system of inequalities is obtained:712 
3α0 + α1 − 2− α2

0 − α2
1 + 2− 2α0 + α1 < 1

3α0 + α1 − 2− α2
0 − α2

1 − 2 + 2α0 − α1 < 1

3α0 + α1 − 2− α2
0 − α2

1 > −1

3α0 + α1 − 2− α2
0 − α2

1 < 1

. (D.2)
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After the cancellations and regrouping of elements the system (D.2) trans-713

forms into:714 
− α2

0 + 5α0 − α2
1 − 5 < 0

− α2
0 + α0 − α2

1 + 2α1 − 1 < 0

− α2
0 + 3α0 − α2

1 + α1 − 1 > 0

− α2
0 + 3α0 − α2

1 + α1 − 3 < 0

. (D.3)

The inequalities in (D.3) can be transformed into the inequalities, based on715

squares of differences:716 
(α0 − 2.5)2 + α2

1 > 1.25

(α0 − 0.5)2 + (α1 − 1)2 > 0.25

(α0 − 1.5)2 + (α1 − 0.5)2 < 1.5

(α0 − 1.5)2 + (α1 − 0.5)2 > −0.5

. (D.4)

Note that any point on the plane of smoothing parameters satisfies the last717

inequality in (D.4), so it is redundant and can be skipped.718

Appendix E. General seasonal CES and SARIMA719

The model (20) can be written in the following state-space form:720

yt = w′0v0,t−1 + w′1v1,t−m + εt

v0,t = F0v0,t−1 + g0εt

v1,t = F1v1,t−m + g1εt

, (E.1)

where v0,t =

(
l0,t
c0,t

)
is the state vector of the non-seasonal part of CES,721

v1,t =

(
l1,t
c1,t

)
is the state vector of the seasonal part, w0 = w1 =

(
1
0

)
722

are the measurement vectors, F0 =

(
1 α1 − 1
1 1− α0

)
, F1 =

(
1 β1 − 1
1 1− β0

)
are723

transition matrices and g0 =

(
α1 − α0

α1 + α0

)
, g1 =

(
β1 − β0
β1 + β0

)
are persistence724

vectors of non-seasonal and seasonal parts respectively.725

Observe that the lags of the non-seasonal and seasonal parts in (E.1)726

differ, which leads to splitting the state-space model into two parts. But727
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uniting these parts will lead to the conventional state-space model:728

yt = w′vt−l + εt

vt = Fvt−l + gεt
, (E.2)

where vt =

(
v0,t

v1,t

)
, vt−l =

(
v0,t−1
v1,t−m

)
, w =

(
w0

w1

)
, F =

(
F0 0
0 F1

)
, g =729 (

g0

g1

)
. The state vector vt−l can also be rewritten as vt−l =

(
B 0
0 Bm

)(
v0,t

v1,t

)
,730

where B is a backshift operator. Making this substitution and taking L =731 (
B 0
0 Bm

)
the state-space model (E.2) can be transformed into:732

yt = w′Lvt + εt

vt = FLvt + gεt
(E.3)

The transition equation in (E.3) can also be rewritten as:733

(I2 − FL)vt = gεt, (E.4)

which after a simple manipulation leads to:734

vt = (I2 − FL)−1gεt, (E.5)

Substituting (E.5) into measurement equation in (E.3) gives:735

yt = w′L(I2 − FL)−1gεt + εt. (E.6)

Inserting the values of the vectors and multiplying the matrices leads to:736

yt = (1 + w′0(I2 − F0B)−1g0B + w′1(I2 − F1B
m)−1g1B

m)εt. (E.7)

Substituting the values by the matrices in (E.7) gives:737

yt =

(
1 + w′0

(
1−B (1− α1)B
−B 1−B + α0B

)−1(
α1 − α0

α1 + α0

)
B+

w′1

(
1−Bm (1− β1)Bm

−Bm 1−Bm + β0B
m

)−1(
β1 − β0
β1 + β0

)
Bm)εt

)
.

(E.8)
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The inverse of the first matrix in (E.8) is equal to:738

(I2 − F0B)−1 =
1

1− 2B − (α0 + α1 − 2)B2

(
1− (1− α0)B (α1 − 1)B

B 1−B

)
,

(E.9)
similarly the inverse of the second matrix is:739

(I2−F1B
m)−1 =

1

1− 2Bm − (β0 + β1 − 2)B2m

(
1− (1− β0)Bm (β1 − 1)Bm

Bm 1−Bm

)
.

(E.10)
Inserting (E.9) and (E.10) into (E.8), after cancellations and regrouping of740

elements leads to:741

(1− 2B − (α0 + α1 − 2)B2)(1− 2Bm − (β0 + β1 − 2)B2m)yt =[
(1− 2B − (α0 + α1 − 2)B2)(1− 2Bm − (β0 + β1 − 2)B2m)+

(1− 2Bm − (β0 + β1 − 2)B2m)(α1 − α0 − ((α0 − α1)
2 − 2α1)B)+

(1− 2B − (α0 + α1 − 2)B2)(β1 − β0 − ((β0 − β1)2 − 2β1)B
m)
]
εt

(E.11)

Unfortunately, there is no way to simplify (E.11) to present it in a compact742

form, so the final model corresponds to SARIMA(2, 0, 2m+ 2)(2, 0, 0)m.743

References744

Akaike, H., 1974. A new look at the statistical model identification. IEEE745

Transactions on Automatic Control 19 (6), 716–723.746

Assimakopoulos, V., Nikolopoulos, K., 2000. The theta model: a decom-747

position approach to forecasting. International Journal of Forecasting 16,748

521–530.749

Athanasopoulos, G., de Silva, A., 2012. Multivariate exponential smoothing750

for forecasting tourist arrivals. Journal of Travel Research 51 (5), 640–652.751

Athanasopoulos, G., Hyndman, R. J., Song, H., Wu, D. C., 2011. The tourism752

forecasting competition. International Journal of Forecasting 27 (3), 822–753

844.754

Barrow, D., Kourentzes, N., Sandberg, R., Niklewski, J., 2020. Automatic755

robust estimation for exponential smoothing: Perspectives from statistics756

and machine learning. Expert Systems with Applications 160, 113637.757

34



Box, G. E., Jenkins, G. M., Reinsel, G. C., Ljung, G. M., 2015. Time series758

analysis: forecasting and control, 5th Edition. John Wiley & Sons.759

Brenner, J. L., D’Esopo, D. A., Fowler, A. G., 1968. Difference equations in760

forecasting formulas. Management Science 15 (3), 141–159.761

Brown, R. G., 1956. Exponential Smoothing for predicting demand.762

URL https://www.industrydocuments.ucsf.edu/docs/jzlc0130763

Brown, R. G., Meyer, R. F., D’Esopo, D. A., 1961. The fundamental theorem764

of exponential smoothing. Operations Research 9 (5), 673–687.765

Chen, F., Ryan, J. K., Simchi-Levi, D., 2000. The impact of exponential766

smoothing forecasts on the bullwhip effect. Naval Research Logistics (NRL)767

47 (4), 269–286.768

Darin, S. G., Stellwagen, E., 2020. Forecasting the M4 competition weekly769

data: Forecast Pro’s winning approach. International Journal of Forecast-770

ing 36 (1), 135–141.771

De Livera, A. M., Hyndman, R. J., Snyder, R. D., 2011. Forecasting time se-772

ries with complex seasonal patterns using exponential smoothing. Journal773

of the American Statistical Association 106 (496), 1513–1527.774
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