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Introduction

Exponential smoothing (ES) is one of the most popular methods in
demand forecasting practice:

Weller and Crone (2012) report that ES was used the most
frequently by practitioners, in ∼32% of cases.

Any major statistical software has it and relies on it (Fildes et al.,
2018; Fildes, 2020; Schaer et al., 2022).

Ivan Svetunkov CMAF FFT, 2023
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Introduction

Yet some machine learning experts seem to have strong views
about exponential smoothing and forecasting:

“Applied forecasting academia hasn’t created anything useful over
the last 40 years”

“Exponential smoothing is just a special case of ARIMA”

“Exponential smoothing is the model from the black and white era
TV”

“The main disadvantage of ES ... is its inability to correctly factor
in and handle market shifts and trends”

Ivan Svetunkov CMAF FFT, 2023
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Introduction

I feel that there are many misconceptions about ES.

And a large misunderstanding around it.

I decided to make a presentation to clarify this.

DISCLAIMER. some of the models are dis-
cussed in my monograph:

Forecasting and Analytics with the Augmented
Dynamic Adaptive Model (ADAM)

Ivan Svetunkov CMAF FFT, 2023
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Basics of ES

Good overview of the past of ES is done by Gardner (1985) and
Gardner (2006).

Here we discuss the main ES methods.

Simple Exponential Smoothing (SES) method was proposed by
Brown (1956) and Holt (2004) in the form:

ŷt+1 = α̂yt + (1− α̂)ŷt, (1)

whre yt is the actual, ŷt is the predicted value, α̂ is the smoothing
parameter.

SES has an underlying ARIMA(0,1,1) model (Muth, 1960).

Ivan Svetunkov CMAF FFT, 2023
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Simple Exponential Smoothing
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Holt’s method

Holt (2004) proposed the trend model in 1957 (presented here in
error correction form):

ŷt+1 = l̂t + b̂t
l̂t = l̂t−1 + b̂t−1 + α̂et
b̂t = b̂t−1 + β̂et

, (2)

where l̂t is the level of series, b̂t is the trend component and β̂ is
the smoothing parameter.

Nerlove and Wage (1964) demonstrated that this has an
underlying ARIMA(0,2,2) model.

Ivan Svetunkov CMAF FFT, 2023
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Holt’s method
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Holt-Winters method

Winters (1960) developed a seasonal version of Holt’s method that
contained seasonal indices:

ŷt+1 = (l̂t + b̂t)ŝt−m+1

l̂t = l̂t−1 + b̂t−1 + α̂ et
ŝt−m

b̂t = b̂t−1 + β̂ et
ŝt−m

ŝt = ŝt−m + γ̂ et
ŝt−m

, (3)

where ŝt is the seasonal component.

Chatfield (1977) showed that there is no underlying ARIMA for the
multiplicative seasonal Holt-Winters method (3).

Ivan Svetunkov CMAF FFT, 2023
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Holt-Winters method
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ARIMA vs ES

Some ES models have underlying ARIMA...

...so, many thought that ARIMA was better than ETS.

Makridakis et al. (1982) conducted an independent experiment.

ARIMA was constructed based on BJ methodology (Box and
Jenkins, 1976).

ES and ARARMA performed better than the others.

Statistical community did not like the results...

Ivan Svetunkov CMAF FFT, 2023
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Damped trend

Roberts (1982) proposed a model that was then picked up by
Gardner and McKenzie (1985), expanding the set of ES methods:

ŷt+1 = l̂t + ϕ̂b̂t
l̂t = l̂t−1 + ϕ̂b̂t−1 + α̂et
b̂t = ϕ̂b̂t−1 + β̂et

, (4)

where ϕ̂ ∈ (0, 1) is a damping parameter.

This method has an underlying ARIMA(1,1,2) model.

Gardner and McKenzie (1989) discuss seasonal version of this.

Ivan Svetunkov CMAF FFT, 2023
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Damped trend (Gardner’s method)
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SSOE state space model

Snyder (1985) modified MSOE and proposed a “Single Source of
Error” state space model:

yt = w′vt−1 + ϵt
vt = Fvt−1 + gϵt

, (5)

where g is a persistence vector, containing smoothing parameters.

Now all the components are influenced by the same error.

This is much easier to understand and estimate than MSOE.

Ivan Svetunkov CMAF FFT, 2023
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SSOE state space model

An example is a local level model, where w = 1, F = 1 and g = α:

yt = lt−1 + ϵt
lt = lt−1 + αϵt

. (6)

It underlies SES.

Ivan Svetunkov CMAF FFT, 2023
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ARIMA vs ES, part 2

In the M3 competition (Makridakis and Hibon, 2000), automatic
ARIMA performed worse than Damped trend.

SSOE ES did not participate.

ES methods did well, but did not win.

Theta won.

Theta relies on SES.

Ivan Svetunkov CMAF FFT, 2023
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SSOE state space model

Ord et al. (1997) expanded SSOE for the cases of multiplicative
components and multiplicative error:

yt = w(vt−1) + r(vt−1)ϵt

vt = f(vt−1) + g(vt−1)ϵt
, (7)

so that SSOE now underlied all the possible ES methods.

Hyndman et al. (2002) expanded the Pegels (1969) taxonomy.

Given 2 types of errors, 5 types of trends and 3 types of seasonal
components, SSOE has 30 models.

Ivan Svetunkov CMAF FFT, 2023
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SSOE state space model

Hyndman et al. (2008) called this framework ETS – Error, Trend,
Seasonality.

ETS is relatively easy to use and estimate, it provides appropriate
prediction intervals and supports model selection (with information
criteria).

It underlies 15 ES methods, including methods by Pegels (1969)
and Taylor (2003).

It can be extended by inclusion of exogenous variables, additional
seasonal components or other variables.

Ivan Svetunkov CMAF FFT, 2023
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ETS framework

Ivan Svetunkov CMAF FFT, 2023
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How can one make a method trustworthy?

Spavound and Kourentzes (2022) discuss four factors impacting
the trustworthiness:

1. Reliability (does it perform consistently across series);

2. Stability (does it perform consistently across time);

3. Intelligibility (explainability of key elements);

4. Alignment (align with objective).

Also see Simon’s presentation:
https://www.youtube.com/watch?v=EfHpaSFAtlc

Ivan Svetunkov CMAF FFT, 2023
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1. Reliability

ES is reported to perform well in many competitions (Makridakis
et al., 1982; Fildes et al., 1998; Makridakis and Hibon, 2000;
Athanasopoulos et al., 2011; Makridakis et al., 2020).

It does not necessarily come first, but it is hard to break.

Makridakis et al. (2022) showed that 92.5% of submissions for M5
failed to outperformed bottom-up ES.

Kolassa (2020) showed that the winner of M5 competition
outperformed bottom-up ES on 58.5% of series in terms of MSE.

The second-place method outperformed bottom-up ES only on
6.7% of series.

So, it is a robust forecasting model.

Ivan Svetunkov CMAF FFT, 2023
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2. Stability

In ES, stability comes from the smoothing parameters.

If they are too high, the forecast becomes unstable.

Pritularga et al. (2023) showed how regularisation can hep ETS.

Ivan Svetunkov CMAF FFT, 2023
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3. Intelligibility

Many demand planners do not know forecasting.

A lot of them do not even know statistics.

Explain this (SARIMA(1,1,2)(0,1,0)4):

yt(1− ϕ1B)(1−B)(1−B4) = ϵt(1 + θ1B + θ2B
2)

or this:

ŷt+1 = α̂yt + (1− α̂)ŷt

Which one is simpler?

Ivan Svetunkov CMAF FFT, 2023
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3. Intelligibility

Ivan Svetunkov CMAF FFT, 2023
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4. Alignment

This can be done by aligning the forecasts from ETS with
decisions:

1. Produce cumulative over the lead time forecasts;

2. Generate prediction intervals/specific quantiles;
▶ Svetunkov (2023a) discusses in Chapter 18 different options

for point forecasts, quantiles and intervals.

+ using loss functions, aligning with decisions (Kourentzes et al.,
2019; Saoud et al., 2022; Svetunkov et al., 2023).

Ivan Svetunkov CMAF FFT, 2023
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Is it accurate?

So, ES ticks all four boxes without much trouble.

But we do not expect it to perform always great.

Nixtla implemented ETS in StatsForecast library.

It works fine.

It does not always outperform ML methods (why would it?)

Ivan Svetunkov CMAF FFT, 2023
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Is it accurate?

https://doi.org/10.48550/arXiv.2310.03589

Ivan Svetunkov CMAF FFT, 2023
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Is it fast?

Makridakis et al. (2023)

Ivan Svetunkov CMAF FFT, 2023
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Can it be improved?

The conventional model was developed for regular demand.

What about...

• explanatory variables,

• intermittent demand,

• and/or multiple frequencies?

Svetunkov (2023a) develops these and other aspects of ETS.

Ivan Svetunkov CMAF FFT, 2023
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Explanatory variables, ETSX

ETSX is first mentioned in Chapter 9 of Hyndman et al. (2008).

It was then used by Koehler et al. (2012) for outliers handling.

Kourentzes and Petropoulos (2016), Ramos et al. (2023) used
ETSX in their studies.

It outperformed the one without X.

For Abolghasemi et al. (2020), ETSX performed poorly.

ETSX is implemented in the adam() function for the smooth
package (Svetunkov, 2023b) in R (R Core Team, 2023).

See Chapter 10 of Svetunkov (2023a).

Ivan Svetunkov CMAF FFT, 2023
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ETSX in R

ETSX(M,N,M) with dummy for promotions, outliers and their lags:

xreg <- data.frame(y, xregExpander(x, lags=-c(1,2), gaps="zero"))

adamModel <- adam(xreg, "MNM", lags=c(1,52), h=52, holdout=FALSE)

Forecast from ETSX(MNM) with Inverse Gaussian distribution
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Intermittent demand, iETS

Svetunkov and Boylan (2023) proposed an intermittent state-space
model based on the pure multiplicative ETS.

yt = otzt, (8)

• It extends the ETS taxonomy,

• allows capturing trends and seasonality,

• allows using exogenous variables for both demand sizes and
demand occurrence.

Implemented in adam(). See Chapter 13 of Svetunkov (2023a).

Ivan Svetunkov CMAF FFT, 2023
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iETS in R
adaModel <- adam(y, "YYY", occurrence="direct", h=28,

holdout=TRUE)

forecast(adaModel, h=28, interval="prediction",

nsim=10000, cumulative=TRUE, side="upper") |> plot()
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Ivan Svetunkov CMAF FFT, 2023
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iETS in R

Compare cumulative sales over the 28 days with the forecasts:
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Demand with multiple seasonalities

Taylor (2010) proposes triple-seasonal Holt-Winters, using the
same principle as the double-seasonal one.

Taylor and Snyder (2012) propose parsimonious seasonal
exponential smoothing, using the same seasonal parameters for
some of periods.

Ivan Svetunkov CMAF FFT, 2023
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Demand with multiple seasonalities

De Livera (2010) proposes BATS model and De Livera et al.
(2011) extend it to TBATS.

TBATS stands for Trigonometric, Box–Cox transform, ARMA
errors, Trend, and Seasonal components.

TBATS(ω, ϕ, p, q, {m1, k1}, {m2, k2}, ..., {mT , kT })

BATS is a generalisation of ETS (without “E”), double- and
triple-seasonal Holt-Winters.

TBATS solves the problem with fractional seasonality via Fourier
transform.

Ivan Svetunkov CMAF FFT, 2023
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Demand with multiple seasonalities

adam() supports multiple seasonal ETS/ARIMA, see Chapter 12 of
Svetunkov (2023a).

The default mechanism is similar to Taylor (2010).

But it supports all ETS models.

And it can work fast if backcasting is used for initialisation.

Ivan Svetunkov CMAF FFT, 2023
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Demand with multiple seasonalities

ETS(M,N,M)48,336 + AR(1):

adamETSMNMAR <- adam(y, "MNM", lags=c(1,48,336), initial="back",

orders=c(1,0,0), h=336, holdout=TRUE, maxeval=1000)

Takes ∼2 seconds to evaluate on 3696 observations.

You can add Fourier terms and update them in ADAM ETSX to
get something similar to TBATS.

Ivan Svetunkov CMAF FFT, 2023
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Demand with multiple seasonalities

forecast(adamETSMNMAR, h=336, interval="pred") |> plot()
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Ivan Svetunkov CMAF FFT, 2023
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Conclusions

• ES has not been a “model from the black & white TV era”
for a long time;

• It has evolved constantly since 1956;

• Huge progress in this area for the last 40 years;

• It is not a special case of ARIMA;

• In fact, you can make them work together;

• Handle external information with ETS;

• Deal with intermittent demand and/or multiple frequencies;

• ADAM presents a modern view on ETS and ARIMA.

Ivan Svetunkov CMAF FFT, 2023
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Conclusions

If you see this ES formulation, run away!

Ivan Svetunkov CMAF FFT, 2023
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Conclusions

You should use state space!

yt = lt−1 + bt−1 + st−m + ϵt

lt = lt−1 + bt−1 + αϵt

bt = bt−1 + βϵt

st = st−m + γϵt

.

• If you use the old ES formulation, then you are stuck in 50s –
60s;

• Get unstuck! Use modern ETS!

Ivan Svetunkov CMAF FFT, 2023
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