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Introduction

How many of you have used combinations for forecasting?

How do you combine forecasts?

There’s lots of papers on different combination methods:

• Means, trimmed and winsorised (Jose and Winkler, 2008);

• Median (Agnew, 1985; Stock and Watson, 2004);

• Weighted combinations (Elliott, 2011; Elliott and
Timmermann, 2016; Kolassa, 2011);

• Claeskens et al. (2016) explains why simple combinations are
more robust than the weighted ones.
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Introduction

How many models do you have in your pool? Do you need all of
them?

Geweke and Amisano (2011) shows that using a subset of models
helps.

In your pool of models:

• some will perform consistently poorly, and need to be
removed;

• some will do consistently well. Keep them!

But how can we decide?

Kourentzes et al. (2018) develop a heuristic to reduce the pool of
models.
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Introduction

Are you sure that your combination is adequate?

Will it change tomorrow?

Yes! Everything is random! You cannot be sure of anything...

Yet all the combination approaches rely on some summary
statistics from a sample.

Vehtari et al. (2017) use the leave-one-out CV errors to get the
standard errors for forecasts.

This way we can compare model performance...
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Point likelihood

Take a look at AIC:

AICm = 2km − 2`m, (1)

`m is the log-likelihood value, km is the number of estimated
parameters of a model m in the pool.

This relies on the summary statistics, log-likelihood `m

It shows how likely it is to have such a model given the data.

This is a sum of point log-likelihoods:

`m =

T∑
t=1

`m,t (2)
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Point likelihood

ETS(M,A,M) applied to AirPassengers data
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Point IC

So, we can use point log-likelihoods to compare models.

The only issue is the bias in the likelihood estimate (Akaike, 1974).

We propose a point AIC:

pAICm,t = 2km − 2T`m,t. (3)

T is needed to bring the point likelihood value to the overall level.

Other criteria can be modified like that as well.
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Pooling with point IC

How can we use that?

1. Apply models to the data;

2. Extract pAIC values for each of them;

3. Use Nemenyi test (Demšar, 2006) to group models;

4. Combine their forecasts.
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Pooling with point IC
ETS on air passengers data!
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Pooling with point IC

You can do that with CV errors as well (e.g. rolling origin).

Nemenyi can be substituted by other tests.
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Real data experiment

We used M1 (Makridakis et al., 1982), M3 (Makridakis and Hibon,
2000), and Tourism competition data (Athanasopoulos et al.,
2011).

A mixture of monthly, quarterly, annual data.

Horizons of 18, 8, and 6.

We measure RMSSE (Athanasopoulos and Kourentzes, 2023),
sCE, and Computational Time.

greybox (Svetunkov, 2025a) and smooth (Svetunkov, 2025b)
packages from R (R Core Team, 2024).
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Real data experiment

We use ETS to select/combine forecasts (adam() function from
smooth):

1. AIC Selection – apply all models, select the best based on
AIC;

2. AICw Combination – weighted combination from Kolassa
(2011);

3. Mean Combination – simple mean of the combination;

4. Pool pAIC Mean – form a pool based on Nemenyi (rmcb()
from the greybox package), take the mean;

5. Pool AIC Combination - same as (4), but with AIC weights;

6. Pool 5 - mean of the pool of the best 5 models.
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Real data experiment

Method min Q1 median Q3 max mean sCE Time

AIC Selection 0.015 0.667 1.171 2.278 51.616 1.922 0.452 0.382
AICw Combination 0.021 0.658 1.167 2.286 51.255 1.904 0.458 0.738
Mean AIC Combination 0.034 0.741 1.258 2.428 372.899 2.116 0.338 0.990
Pool pAIC Mean 0.027 0.653 1.169 2.238 50.598 1.877 0.450 0.766
Pool AIC Combination 0.021 0.658 1.168 2.283 51.242 1.903 0.455 0.700
Pool 5 0.082 0.786 1.289 2.408 50.973 2.003 0.532 0.397
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Real data experiment
The p−value from the significance test is 0.000.

95% confidence intervals constructed.
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Conclusions

• All modern combination approaches rely on summary
statistics;

• We consider a distribution of point likelihoods;

• This allows forming pools of models, kicking out the bad ones
(superforecasters?);

• Their combination is more robust.
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Thank you for your attention!

Ivan Svetunkov
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