smooth.ES.loss_
- property ES.loss_: str
$loss).
The objective function minimized during model fitting. Uses trailing underscore to distinguish from the input parameter and follow scikit-learn convention for fitted attributes.
- Returns:
Loss function name, one of: -
"likelihood": Maximum likelihood (default) -"MSE": Mean Squared Error -"MAE": Mean Absolute Error -"HAM": Half Absolute Moment -"LASSO": L1 regularization -"RIDGE": L2 regularization -"GTMSE": Geometric Trace MSE -"GPL": Generalized Predictive Likelihood- Return type:
str
- Raises:
ValueError – If the model has not been fitted yet.
See also
loss_valueThe optimized loss function value
distribution_Error distribution used
Examples
>>> model = ADAM(model="AAN", loss="MAE") >>> model.fit(y) >>> print(model.loss_) 'MAE'
- Type:
Loss function used for parameter estimation (R