Комплексное Экспоненциальное Сглаживание

Авторы: Ivan Svetunkov, Nikolaos Kourentzes, Keith Ord. Журнал: Naval Research Logistics Аннотация на английском: Exponential smoothing has been one of the most popular forecasting methods used to support various decisions in organisations, in activities such as inventory management, scheduling, revenue management and other areas. Although its relative simplicity and transparency have made it very attractive […]

ISF 2019, Салоники, Греция

В этот раз я презентовал спин-офф исследования на тему прерывистого спроса. Идея исследования в том, чтобы в случае с сезонным прерывистым спросом (часто встречающимся в розничной торговле, например, при продаже арбузов и дынь) использовать регрессии с смешанными моделями (например, логистическая + лог-нормальная регрессии). Результаты получаются интересные, но пока не окончательные, так как у меня мало […]

SMUG2019

Недавно я был приглашён в качестве выступающего на конференцию SMUG2019 (SMoothie Users Group), организованную компанией Demand Works в Нью Йорке. Меня попросили сделать презентации на две темы: «Модель ARIMA в форме пространства состояний для прогнозирования в цепях поставок«, на основе которой я помог разработать компании специальный модель, «Искусственный интеллект в бизнесе» — одна из тех […]

Презентация на OR60. Экспоненциальное сглаживание: прошлое, настоящее и будущее

Роберт Файлдс попросил меня приготовить обзор на тему экспоненциального сглаживания для конференции OR60, которая прошла в Ланкастере c 11 по 13 сентября. Я решил сделать обзор в формате «прошлое — настоящее — будущее», добавив в последнюю часть модель, которую мы разрабатываем с Никосом (GUM — Generalised Univariate Model, что-то типа «Обобщённая одномерная модель»). В конце […]

Пакет «smooth» для R. Прерывистый спрос. Часть 1. Введение

ОБНОВЛЕНИЕ: Начиная с версии smooth v 2.5.0, модели и соответствующие функции были изменены. Теперь вместо intermittent и iss() в пакете существуют occurrence и oes(). Пожалуйста, используйте новые функции и новые параметры. Старый функционал будет удален в следующей версии пакета. Этот статья была обновлена 25 апреля 2019 года. Одно из преимуществ функций пакета smooth заключается во […]

ISF 2018, Болдер, США

В этом году я презентовал исследование, являющееся продолжением того, что я докладывал в прошлом году в Австралии. Название презентации — «Forecasting intermittent data with complex patterns» (Прогнозирование прерывистых данных со сложными тенденциями). В этом исследовании мы разработали модель с логистической вероятностью, которая позволяет вылавливать сложные паттерны в переменной «появления спроса». Фактически с помощью нехитрых преобразований […]

Сравнение аддитивной и мультипликативной регрессий с помощью AIC в R

Один из основных принципов, которому учат студентов в курсе статистикик заключается в том, что сравнение регрессионных моделей с помощью информационных критериев возможно только в том случае, когда выходная переменная в моделях одинаковая. Например, модель с выходной переменной \(\log(y_t)\) не может быть сравнена с моделью с \(y_t\) с помощью AIC. Причина в том, что переменные имеют […]

Пакет «smooth» для R. Общие параметры. Часть 4. Экзогенные переменные. Продвинутый уровень

В прошлый раз мы рассмотрели основы по работе с экзогенными переменными в функциях пакета smooth. Сегодня мы поговорим о более продвинутых вещах. Но прежде чем перейти к ним, нам нужно поговорить о вспомогательных функциях, которые реализованы в пакете greybox и используются в smooth. Первая из них называется xregExpander() и позволяет генерировать лаговые переменные на основе […]

Пакет «smooth» для R. Общие параметры. Часть 3. Экзогенные переменные. Основы

Одно из преимуществ функций пакета smooth — это возможность использовать экзогенные переменные (регрессоры). Это потенциально может привести к росту точности прогнозов, в случае, если у вас в распоряжении есть хорошие оценки будущих значений включённых переменных. Например, в случае с ритейлом в качестве экзогенной переменной может выступать наличие акции в магазине («купите один шампунь, получите ящик […]

Пакет «smooth» для R. Общие параметры. Часть 2. Оценка параметров

Прежде чем мы приступим к обсуждению сегоднешней темы, я бы рекомендовал обратиться к статье «Элементы математической статистики, проверка гипотез» электронного учебника — нам понадобятся сегодня такие понятия, как несмещённость, эффективность и состоятельность. Здесь их лишний раз обсуждать нехочется. Кроме того, многое, что мы рассмотрим сегодня, уже описано в главах «Простые методы оценки параметров моделей» и […]