Введение Некоторые люди считают, что главная идея прогнозирования заключается в том, чтобы как можно более точно предсказать будущее. У меня для них плохие новости. На самом деле главная идея прогнозирования заключается в уменьшении неопределённости относительно будущего. Ведь, будущее не предопределено, мы никогда не знаем, что именно произойдёт, когда и как. Но с помощью методов прогнозирования […]
smooth
useR!2019, Тулуза, Франция
Salut mes amis! Сегодня я презентовал свой пакет для R smooth на конференции useR!2019 в Тулузе, Франция. Это достаточно любопытная конференция, посвящённая решению конкретных проблем. Люди здесь скорее презентуют конкретные функции из своих пакетов, нежели модели, которые лежат в их основе (как, например, на ISF). С одной стороны, у такого формата есть свои ограничения, но […]
Пакет «smooth» для R. Прерывистый спрос. Часть 1. Введение
ОБНОВЛЕНИЕ: Начиная с версии smooth v 2.5.0, модели и соответствующие функции были изменены. Теперь вместо intermittent и iss() в пакете существуют occurrence и oes(). Пожалуйста, используйте новые функции и новые параметры. Старый функционал будет удален в следующей версии пакета. Этот статья была обновлена 25 апреля 2019 года. Одно из преимуществ функций пакета smooth заключается во […]
Пакет «smooth» для R. Общие параметры. Часть 4. Экзогенные переменные. Продвинутый уровень
В прошлый раз мы рассмотрели основы по работе с экзогенными переменными в функциях пакета smooth. Сегодня мы поговорим о более продвинутых вещах. Но прежде чем перейти к ним, нам нужно поговорить о вспомогательных функциях, которые реализованы в пакете greybox и используются в smooth. Первая из них называется xregExpander() и позволяет генерировать лаговые переменные на основе […]
Пакет «smooth» для R. Общие параметры. Часть 3. Экзогенные переменные. Основы
Одно из преимуществ функций пакета smooth — это возможность использовать экзогенные переменные (регрессоры). Это потенциально может привести к росту точности прогнозов, в случае, если у вас в распоряжении есть хорошие оценки будущих значений включённых переменных. Например, в случае с ритейлом в качестве экзогенной переменной может выступать наличие акции в магазине («купите один шампунь, получите ящик […]
Пакет «smooth» для R. Общие параметры. Часть 2. Оценка параметров
Прежде чем мы приступим к обсуждению сегоднешней темы, я бы рекомендовал обратиться к статье «Элементы математической статистики, проверка гипотез» электронного учебника — нам понадобятся сегодня такие понятия, как несмещённость, эффективность и состоятельность. Здесь их лишний раз обсуждать нехочется. Кроме того, многое, что мы рассмотрим сегодня, уже описано в главах «Простые методы оценки параметров моделей» и […]
Старая собака, новые трюки…
Так можно перевести название статьи, написанной мною совместно с Фотиосом Петропулосом, которая посвящёна статистической модели, лежащей в основе простого скользящего среднего. Недавно она была принята к печати журналом International Journal of Production Research. Модель, обсуждаемая в статье, уже реализована в функции sma() пакета smooth для R. Аннотация на английском Simple moving average (SMA) is a […]
smooth v2.0.0. Что нового
Вы не поверите! Пакет smooth для R обновился до версии 2.0.0 и теперь доступен в CRAN. Такой красивый номер в версии не часто встречается, поэтому я решил немного написать о том, что же нового появилось в пакете. Во-первых, в пакете есть новая функция, ves() — Векторное Экспоненциальное Сглаживание. Эта модель позволяет оценивать несколько рядов одновременно […]
Пакет «smooth» для R. Общие параметры. Часть 1. Прогнозные интервалы
Предыдущие 6 статей мы обсуждали основные свойства функции es(). Пришло время двигаться дальше. Начиная с этой статьи мы обсудим параметры, общие для всех функций, реализованных в пакете smooth. К таким функциям относятся: es(), ssarima(), ces(), ges() и sma(). Однако, беря во внимание, что на данный момент мы обсудили только экспоненциальное сглаживанием, все примеры мы будем […]
Пакет «smooth» для R. Функция es(). Часть 6. О том, как происходит оптимизация параметров
Теперь, когда мы обсудили основные черты функции es(), мы можем перейти к тому, как оптимизационный механизм работает, как параметры ограничиваются и как задаются стартовые значения при оптимизации функции es(). Эта статья написана для тех исследователей, которым важно знать, как работает тёмная сторона es(). Заметим, что в этой статье, мы будем обсуждать стартовые значения параметров. Не […]