Detecting patterns in white noise

Back in 2015, when I was working on my paper on Complex Exponential Smoothing, I conducted a simple simulation experiment to check how ARIMA and ETS select components/orders in time series. And I found something interesting… One of the important steps in forecasting with statistical models is identifying the existing structure. In the case of […]

smooth & greybox under LGPLv2.1

Good news, everyone! I’ve recently released major versions of my packages smooth and greybox, v4.0.0 and v2.0.0 respectively, on CRAN. Has something big happened? Yes and no. Let me explain. Starting from these versions, the packages will be licensed under LGPLv2.1 instead of the very restrictive GPLv2. This does not change anything to the everyday […]

smooth v3.2.0: what’s new?

smooth package has reached version 3.2.0 and is now on CRAN. While the version change from 3.1.7 to 3.2.0 looks small, this has introduced several substantial changes and represents a first step in moving to the new C++ code in the core of the functions. In this short post, I will outline the main new […]

Smooth forecasting with the smooth package in R

Authors: Ivan Svetunkov Abstract: There are many forecasting related packages in R with varied popularity, the most famous of all being forecast, which implements several important forecasting approaches, such as ARIMA, ETS, TBATS and others. However, the main issue with the existing functionality is the lack of flexibility for research purposes, when it comes to […]

After the creation of ADAM: smooth v3.1.0

Since the previous post on “The Creation of ADAM“, I had difficulties finding time to code anything, but I still managed to fix some bugs, implement a couple of features and make changes, important enough to call the next version of package smooth “3.1.0”. Here is what’s new: A new algorithm for ARIMA order selection […]

useR!2019 in Toulouse, France

Salut mes amis! Today I’ve presented my smooth package at the useR!2019 conference in Toulouse, France. This is a nice conference, focused on specific solutions to specific problems. Here, people tend to present functions from their packages (not underlying models, like, for example, at ISF). On one hand, this has its own limitations, but on […]