One thing that bothers me when I read posts on social media or papers in peer-reviewed journals is the claim that a proposed approach is “assumption-free.” In forecasting, this is never true. Such an approach is like a spherical unicorn in a vacuum (see image above). Here’s why. Every model is a simplification of reality, […]
Statistics
Structure vs. Noise: A Fundamental Concept in Forecasting
One of the core ideas in statistics, which extends to many other fields including forecasting, is the concept of structure versus noise. You’ve probably heard of it, but it’s often overlooked by those without a strong quantitative background. So, let’s discuss. The core of the idea is that any data consists of two fundamental parts: […]
Complex-Valued Econometrics with Examples in R
Back in 2022, my father asked me to help him in amending and editing a monograph he wrote on the topic of “Complex-Valued Econometrics”. The original book focused on dynamic models, but after looking through the material and a thorough discussion, we decided to write something more fundamental. The monograph is based on the research […]
ISF2024: How to Bootstrap Time Series without Attracting Attention of Statisticians
On 1st July, I presented my ongoing work on time series bootstrap and its impact on prediction intervals at ISF2024 in Dijon, France. Abstract: Bootstrap is extensively used in statistics and machine learning for cross-sectional data to account for uncertainty about the data, model form, and parameter estimates. However, conventional methods may not be suitable […]
Statistical tests flowchart
In Lancaster University, I teach the module called “Statistics and Descriptive Analytics”, which is compulsory for master students of the programme “Business Analytics“. This year, the module has been delivered by Alisa Yusupova and me, and I have prepared a flowchart that should (hopefully) help students decide, which of the statistical tests to use in […]