I am delighted to announce a new package on CRAN. It is called “greybox”. I know, what my American friends will say, as soon as they see the name – they will claim that there is a typo, and that it should be “a” instead of “e”. But in fact no mistake was made – […]
R
Comparing additive and multiplicative regressions using AIC in R
One of the basic things the students are taught in statistics classes is that the comparison of models using information criteria can only be done when the models have the same response variable. This means, for example, that when you have \(\log(y_t)\) and calculate AIC, then this value is not comparable with AIC from a […]
“smooth” package for R. Common ground. Part IV. Exogenous variables. Advanced stuff
Previously we’ve covered the basics of exogenous variables in smooth functions. Today we will go slightly crazy and discuss automatic variables selection. But before we do that, we need to look at a Santa’s little helper function implemented in smooth. It is called xregExpander(). It is useful in cases when you think that your exogenous […]
“smooth” package for R. Common ground. Part III. Exogenous variables. Basic stuff
One of the features of the functions in smooth package is the ability to use exogenous (aka “external”) variables. This potentially leads to the increase in the forecasting accuracy (given that you have a good estimate of the future exogenous variable). For example, in retail this can be a binary variable for promotions and we […]
smooth functions in 2017
Over the year 2017 the smooth package has grown from v1.6.0 to v2.3.1. Now it is much more mature and has more downloads. It even now has its own hex (thanks to Fotios Petropoulos): A lot of changes happened in 2017, and it is hard to mention all of them, but the major ones are: […]
“smooth” package for R. Common ground. Part II. Estimators
UPDATE: Starting from the v2.5.1 the cfType parameter has been renamed into loss. This post has been updated since then in order to include the more recent name. A bit about estimates of parameters Hi everyone! Today I want to tell you about parameters estimation of smooth functions. But before going into details, there are […]
smooth v2.0.0. What’s new
Good news, everyone! smooth package has recently received a major update. The version on CRAN is now v2.0.0. I thought that this is a big deal, so I decided to pause for a moment and explain what has happened, and why this new version is interesting. First of all, there is a new function, ves(), […]
“smooth” package for R. Common ground. Part I. Prediction intervals
UPDATE: Starting from v2.5.1 the parameter intervals has been renamed into interval for the consistency purposes with the other R functions. We have spent previous six posts discussing basics of es() function (underlying models and their implementation). Now it is time to move forward. Starting from this post we will discuss common parameters, shared by […]
“smooth” package for R. es() function. Part VI. Parameters optimisation
UPDATE: Starting from the v2.5.6 the C parameter has been renamed into B. This is now consistent across all the functions. Now that we looked into the basics of es() function, we can discuss how the optimisation mechanism works, how the parameters are restricted and what are the initials values for the parameters in the […]
“smooth” package for R. es() function. Part V. Essential parameters
While the previous posts on es() function contained two parts: theory of ETS and then the implementation – this post will cover only the latter. We won’t discuss anything new, we will mainly look into several parameters that the exponential smoothing function has and what they allow us to do. We start with initialisation of […]