I have been asked recently by a colleague of mine how to extract the variance from a model estimated using adam() function from the smooth package in R. The problem was that that person started reading the source code of the forecast.adam() and got lost between the lines (this happens to me as well sometimes). […]
smooth
Detecting patterns in white noise
Back in 2015, when I was working on my paper on Complex Exponential Smoothing, I conducted a simple simulation experiment to check how ARIMA and ETS select components/orders in time series. And I found something interesting… One of the important steps in forecasting with statistical models is identifying the existing structure. In the case of […]
smooth & greybox under LGPLv2.1
Good news, everyone! I’ve recently released major versions of my packages smooth and greybox, v4.0.0 and v2.0.0 respectively, on CRAN. Has something big happened? Yes and no. Let me explain. Starting from these versions, the packages will be licensed under LGPLv2.1 instead of the very restrictive GPLv2. This does not change anything to the everyday […]
smooth v3.2.0: what’s new?
smooth package has reached version 3.2.0 and is now on CRAN. While the version change from 3.1.7 to 3.2.0 looks small, this has introduced several substantial changes and represents a first step in moving to the new C++ code in the core of the functions. In this short post, I will outline the main new […]
Smooth forecasting with the smooth package in R
Authors: Ivan Svetunkov Abstract: There are many forecasting related packages in R with varied popularity, the most famous of all being forecast, which implements several important forecasting approaches, such as ARIMA, ETS, TBATS and others. However, the main issue with the existing functionality is the lack of flexibility for research purposes, when it comes to […]
The first draft of “Forecasting and Analytics with ADAM”
After working on this for more than a year, I have finally prepared the first draft of my online monograph “Forecasting and Analytics with ADAM“. This is a monograph on the model that unites ETS, ARIMA and regression and introduces advanced features in univariate modelling, including: ETS in a new State Space form; ARIMA in […]
After the creation of ADAM: smooth v3.1.0
Since the previous post on “The Creation of ADAM“, I had difficulties finding time to code anything, but I still managed to fix some bugs, implement a couple of features and make changes, important enough to call the next version of package smooth “3.1.0”. Here is what’s new: A new algorithm for ARIMA order selection […]
The creation of ADAM – next step in statistical forecasting
Good news everyone! The future of statistical forecasting is finally here :). Have you ever struggled with ETS and needed explanatory variables? Have you ever needed to unite ARIMA and ETS? Have you ever needed to deal with all those zeroes in the data? What about the data with multiple seasonalities? All of this and […]
Multiplicative State-Space Models for Intermittent Time Series, 2019
More than 2 years ago I published on this website a working paper entitled “Multiplicative State-Space Models for Intermittent Time Series“, written by John Boylan and I. This was an early version of the paper, which we submitted to International Journal of Forecasting on 31st January 2017. More than two years later (on 11th July […]
How confident are you? Assessing the uncertainty in forecasting
Introduction Some people think that the main idea of forecasting is in predicting the future as accurately as possible. I have bad news for them. The main idea of forecasting is in decreasing the uncertainty. Think about it: any event that we want to predict has some systematic components \(\mu_t\), which could potentially be captured […]