References
• Akram, M., Hyndman, R.J., Ord, J.K., 2009. Exponential Smoothing and Non-negative Data. Australian & New Zealand Journal of Statistics. 51, 415–432. https://doi.org/10.1111/j.1467-842X.2009.00555.x
• Anderson, T.W., Darling, D.A., 1952. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics. 23, 193–212. https://doi.org/10.1214/aoms/1177729437
• Assimakopoulos, V., Nikolopoulos, K., 2000. The theta model: a decomposition approach to forecasting. International Journal of Forecasting. 16, 521–530. https://doi.org/10.1016/S0169-2070(00)00066-2
• Athanasopoulos, G., Hyndman, R.J., Song, H., Wu, D.C., 2011. The tourism forecasting competition. International Journal of Forecasting. 27, 822–844. https://doi.org/10.1016/j.ijforecast.2010.04.009
• Barrow, D., Kourentzes, N., Sandberg, R., Niklewski, J., 2020. Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications. 160, 113637. https://doi.org/10.1016/j.eswa.2020.113637
• Bartlett, M.S., 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 160, 268–282. https://doi.org/10.2307/96803
• Bergmeir, C., Hyndman, R.J., Benítez, J.M., 2016. Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting. 32, 303–312. https://doi.org/10.1016/j.ijforecast.2015.07.002
• Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 31, 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
• Borchers, H.W., 2022. Pracma: Practical numerical math functions. https://CRAN.R-project.org/package=pracma R package version 2.4.2
• Box, George.E.P., Pierce, D.A., 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association. 65, 1509–1526. https://doi.org/10.1080/01621459.1970.10481180
• Box, G., Jenkins, G., 1976. Time series analysis: forecasting and control. Holden-day, Oakland, California.
• Boylan, J.E., Syntetos, A.A., 2021. Intermittent Demand Forecasting. Context, Methods and Applications. John Wiley & Sons Ltd, 111 River st., Hoboken, NJ 07030, USA.
• Brenner, J.L., D’Esopo, D.a., Fowler, a.G., 1968. Difference Equations in Forecasting Formulas. Management Science. 15, 141–159. https://doi.org/10.1287/mnsc.15.3.141
• Breusch, T.S., 1978. Testing for autocorrelation in dynamic linear models. Australian Economic Papers. 17, 334–355. https://doi.org/10.1111/j.1467-8454.1978.tb00635.x
• Breusch, T.S., Pagan, A.R., 1979. A simple test for heteroscedasticity and random coefficient variation. Econometrica. 47, 1287–1294. https://doi.org/10.2307/1911963
• Brown, R.G., 1956. Exponential Smoothing for predicting demand.
• Burnham, K.P., Anderson, D.R., 2004. Model Selection and Multimodel Inference. Springer New York. https://doi.org/10.1007/b97636
• Chakraborty, S., 2015. Generating discrete analogues of continuous probability distributions-A survey of methods and constructions. Journal of Statistical Distributions and Applications. 2, 6. https://doi.org/10.1186/s40488-015-0028-6
• Chatfield, C., 1996. Model uncertainty and forecast accuracy. Journal of Forecasting. 15, 495–508. https://doi.org/10.1002/(SICI)1099-131X(199612)15:7<495::AID-FOR640>3.3.CO;2-F
• Chatfield, C., 1977. Some Recent Developments in Time-Series Analysis. Journal of the Royal Statistical Society. Series A (General). 140, 492. https://doi.org/10.2307/2345281
• Chatfield, C., Koehler, A.B., Ord, J.K., Snyder, R.D., 2001. A New Look at Models for Exponential Smoothing. Journal of the Royal Statistical Society, Series D (The Statistician). 50, 147–159. https://www.jstor.org/stable/2681090
• Claeskens, G., Magnus, J.R., Vasnev, A.L., Wang, W., 2016. The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting. 32, 754–762. https://doi.org/10.1016/j.ijforecast.2015.12.005
• Clements, M., Hendry, D., 1998. Forecasting economic time series. Cambridge University Press. https://doi.org/10.1017/CBO9780511599286
• Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I., 1990. STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics. 6, 3–73.
• Cleveland, W.S., 1979. Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association. 74, 829–836. https://doi.org/10.2307/2286407
• Croston, J.D., 1972. Forecasting and Stock Control for Intermittent Demands. Operational Research Quarterly (1970-1977). 23, 289. https://doi.org/10.2307/3007885
• Davydenko, A., Fildes, R., 2013. Measuring Forecasting Accuracy: The Case Of Judgmental Adjustments To SKU-Level Demand Forecasts. International Journal of Forecasting. 29, 510–522. https://doi.org/10.1016/j.ijforecast.2012.09.002
• De Livera, A.M., 2010. Exponentially weighted methods for multiple seasonal time series. International Journal of Forecasting. 26, 655–657. https://doi.org/10.1016/j.ijforecast.2010.05.010
• De Livera, A.M., Hyndman, R.J., Snyder, R.D., 2011. Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing. Journal of the American Statistical Association. 106, 1513–1527. https://doi.org/10.1198/jasa.2011.tm09771
• Demšar, J., 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research. 7, 1–30. https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
• Dhar, P., 1999. The carbon impact of artificial intelligence. Nature Machine Intelligence. 2, 423–425. https://doi.org/10.1038/s42256-020-0219-9
• Dickey, D.A., Fuller, W.A., 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association. 74, 427–431. https://doi.org/10.1080/01621459.1979.10482531
• Dictionary, 2021. Method. https://dictionary.cambridge.org/dictionary/english/method (version: 2021-09-02)
• Durbin, J., Watson, G.S., 1950. Testing for serial correlation in least squares regression. i. Biometrika. 37, 409–428. https://doi.org/10.1093/biomet/37.3-4.409
• Engle, R.F., 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica. 50, 987. https://doi.org/10.2307/1912773
• Fildes, R., Hibon, M., Makridakis, S., Meade, N., 1998. Generalising about univariate forecasting methods: further empirical evidence. International Journal of Forecasting. 14, 339–358. https://doi.org/10.1016/S0169-2070(98)00009-0
• Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association. 32, 675–701. https://doi.org/10.1080/01621459.1937.10503522
• Gardner, E.S., 2006. Exponential smoothing: The state of the art-Part II. International Journal of Forecasting. 22, 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005
• Gardner, E.S., 1985. Exponential smoothing: The state of the art. Journal of Forecasting. 4, 1–28. https://doi.org/10.1002/for.3980040103
• Gardner, E.S., Diaz-Saiz, J., 2008. Exponential smoothing in the telecommunications data. International Journal of Forecasting. 24, 170–174. https://doi.org/10.1016/j.ijforecast.2007.05.002
• Gardner, E.S., McKenzie, E., 1989. Seasonal Exponential Smoothing with Damped Trends. Management Science. 35, 372–376. https://doi.org/10.1287/mnsc.35.3.372
• Gardner, E.S., McKenzie, E., 1985. Forecasting trends in time series. Management Science. 31, 1237–1246. https://doi.org/10.1016/0169-2070(86)90056-7
• Geweke, J., 1986. Comment. Econometric Reviews. 5, 57–61. https://doi.org/10.1080/07474938608800097
• Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association. 102, 359–378. https://doi.org/10.1198/016214506000001437
• Godfrey, L.G., 1978. Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica. 46, 1293–1301. https://doi.org/10.2307/1913829
• Goodwin, P., Lawton, R., 1999. On the asymmetry of the symmetric MAPE. International Journal of Forecasting. 15, 405–408. https://doi.org/10.1016/S0169-2070(99)00007-2
• Gould, P.G., Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J., Vahid-Araghi, F., 2008. Forecasting time series with multiple seasonal patterns. European Journal of Operational Research. 191, 205–220. https://doi.org/10.1016/j.ejor.2007.08.024
• Hanck, C., Arnold, M., Gerber, A., Schmelzer, M., 2020. Introduction to Econometrics with R. https://www.econometrics-with-r.org/index.html (version: 2020-08-12)
• Holt, C.C., 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting. 20, 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015
• Huber, P.J., 1992. Robust estimation of a location parameter, in: Kotz, S., Johnson, N.L. (Eds.), Breakthroughs in Statistics: Methodology and Distribution. Springer New York, New York, NY, pp. 492–518. https://doi.org/10.1007/978-1-4612-4380-9_35
• Hyndman, R.J., Khandakar, Y., 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software. 26, 1–22. https://www.jstatsoft.org/article/view/v027i03
• Hyndman, R.J., Koehler, A.B., 2006. Another look at measures of forecast accuracy. International Journal of Forecasting. 22, 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001
• Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D., 2008. Forecasting with Exponential Smoothing. Springer Berlin Heidelberg.
• Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S., 2002. A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting. 18, 439–454. https://doi.org/10.1016/S0169-2070(01)00110-8
• James, G., Witen, D., Hastie, T., Tibshirani, R., 2017. An Introduction to Statistical Learning with Applications in R. Springer New York. https://doi.org/10.1016/j.peva.2007.06.006
• Jose, V.R.R., Winkler, R.L., 2008. Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting. 24, 163–169. https://doi.org/10.1016/j.ijforecast.2007.06.001
• Koehler, A.B., Snyder, R.D., Ord, J.K., Beaumont, A., 2012. A study of outliers in the exponential smoothing approach to forecasting. International Journal of Forecasting. 28, 477–484. https://doi.org/10.1016/j.ijforecast.2011.05.001
• Koenker, R., Bassett, G., 1978. Regression Quantiles. Econometrica. 46, 33. https://doi.org/10.2307/1913643
• Kolassa, S., 2016. Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting. 32, 788–803. https://doi.org/10.1016/j.ijforecast.2015.12.004
• Kolassa, S., 2011. Combining exponential smoothing forecasts using Akaike weights. International Journal of Forecasting. 27, 238–251. https://doi.org/10.1016/j.ijforecast.2010.04.006
• Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O., 2005. The M3 competition: Statistical tests of the results. International Journal of Forecasting. 21, 397–409. https://doi.org/10.1016/j.ijforecast.2004.10.003
• Kourentzes, N., 2014. On intermittent demand model optimisation and selection. International Journal of Production Economics. 156, 180–190. https://doi.org/10.1016/j.ijpe.2014.06.007
• Kourentzes, N., 2012. Statistical Significance of Forecasting Methods – an empirical evaluation of the robustness and interpretability of the MCB, ANOM and Friedman-Nemenyi Test. https://kourentzes.com/forecasting/2012/04/19/statistical-significance-of-forecasting-methods-an-empirical-evaluation-of-the-robustness-and-interpretability-of-the-mcb-anom-and-friedman-nemenyi-test/ (version: 2021-08-12)
• Kourentzes, N., Barrow, D., Petropoulos, F., 2019a. Another look at forecast selection and combination: Evidence from forecast pooling. International Journal of Production Economics. 209, 226–235. https://doi.org/10.1016/j.ijpe.2018.05.019
• Kourentzes, N., Li, D., Strauss, A.K., 2019b. Unconstraining methods for revenue management systems under small demand. Journal of Revenue and Pricing Management. 18, 27–41.
• Kourentzes, N., Petropoulos, F., 2016. Forecasting with multivariate temporal aggregation: The case of promotional modelling. International Journal of Production Economics. 181, 145–153. https://doi.org/10.1016/j.ijpe.2015.09.011
• Kourentzes, N., Trapero, J.R., 2018. On the use of multi-step cost functions for generating forecasts. Department of Management Science Working Paper Series.
• Kourentzes, N., Trapero, J.R., Barrow, D.K., 2019c. Optimising forecasting models for inventory planning. International Journal of Production Economics. 107597. https://doi.org/10.1016/j.ijpe.2019.107597
• Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root : How Sure Are We That Economic Time Series Are Nonstationary? Journal of Econometrics. 54, 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
• Lazo, A.V., Rathie, P., 1978. On the entropy of continuous probability distributions (Corresp.). IEEE Transactions on Information Theory. 24, 120–122. https://doi.org/10.1109/TIT.1978.1055832
• Lee, Y.S., Scholtes, S., 2014. Empirical prediction intervals revisited. International Journal of Forecasting. 30, 217–234. https://doi.org/10.1016/j.ijforecast.2013.07.018
• Lichtendahl, K.C., Grushka-Cockayne, Y., Winkler, R.L., 2013. Is It Better to Average Probabilities or Quantiles? Management Science. 59, 1594–1611. https://doi.org/10.1287/mnsc.1120.1667
• Ljung, G.M., Box, G.E.P., 1978. On a measure of lack of fit in time series models. Biometrika. 65, 297–303. https://doi.org/10.1093/biomet/65.2.297
• Makridakis, S., 1993. Accuracy concerns measures: theoretical and practical concerns. International Journal of Forecasting. 9, 527–529. https://doi.org/10.1016/0169-2070(93)90079-3
• Makridakis, S., Andersen, A.P., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., Winkler, R.L., 1982. The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting. 1, 111–153. https://doi.org/10.1002/for.3980010202
• Makridakis, S., Hibon, M., 2000. The M3-Competition: results, conclusions and implications. International Journal of Forecasting. 16, 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1
• Makridakis, S., Hibon, M., 1997. ARMA models and the Box–Jenkins methodology. Journal of Forecasting. 16, 147–163. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
• Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2022. M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting. 38, 1346–1364. https://doi.org/10.1016/j.ijforecast.2021.11.013
• McKenzie, E., 1976. A Comparison of Some Standard Seasonal Forecasting Systems. The Statistician. 25, 3. https://doi.org/10.2307/2988127
• Mudholkar, G.S., Tian, L., 2002. An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test. Journal of Statistical Planning and Inference. 102, 211–221. https://doi.org/10.1016/S0378-3758(01)00099-4
• Muth, J.F., 1960. Optimal Properties of Exponentially Weighted Forecasts. Journal of the American Statistical Association. 55, 299–306. https://doi.org/10.2307/2281742
• Nerlove, M., Wage, S., 1964. On the Optimality of Adaptive Forecasting. Management Science. 10, 207–224. https://doi.org/10.1287/mnsc.10.2.207
• Newbold, P., Carlson, W., Thorne, B., 2020. Statistics for Business and Economics, 9th Global Edition. Pearson.
• Ord, J.K., Koehler, A.B., Snyder, R.D., 1997. Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association. 92, 1621–1629. https://doi.org/10.1080/01621459.1997.10473684
• Ord, Keith., Fildes, Robert., Kourentzes, N., 2017. Principles of Business Forecasting, 2nd ed. Wessex Press, Inc, New York, New York, USA.
• Osman, A.F., King, M.L., 2015. A new approach to forecasting based on exponential smoothing with independent regressors. http://econpapers.repec.org/paper/mshebswps/2015-2.htm
• Pantula, S.G., 1986. Comment. Econometric Reviews. 5, 71–74. https://doi.org/10.1080/07474938608800099
• Pegels, C.C., 1969. Exponential Forecasting : Some New Variations. Management Science. 15, 311–315. https://www.jstor.org/stable/2628137
• Petropoulos, F., Hyndman, R.J., Bergmeir, C., 2018a. Exploring the sources of uncertainty: Why does bagging for time series forecasting work? European Journal of Operational Research. 268, 545–554. https://doi.org/10.1016/j.ejor.2018.01.045
• Petropoulos, F., Kourentzes, N., 2015. Forecast combinations for intermittent demand. Journal of the Operational Research Society. 66, 914–924. https://doi.org/10.1057/jors.2014.62
• Petropoulos, F., Kourentzes, N., Nikolopoulos, K., Siemsen, E., 2018b. Judgmental selection of forecasting models. Journal of Operations Management. 60, 34–46. https://doi.org/10.1016/j.jom.2018.05.005
• Petropoulos, F., Svetunkov, I., 2020. A simple combination of univariate models. International Journal of Forecasting. 36, 110–115. https://doi.org/10.1016/j.ijforecast.2019.01.006
• Pritularga, K., Svetunkov, I., Kourentzes, N., 2022. Shrinkage Estimator for Exponential Smoothing Models. International Journal of Forecasting. In Print, NA.
• Rao, R.C., 1945. Information and accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society. 37, 81–91.
• Roberts, S.A., 1982. A General Class of Holt-Winters Type Forecasting Models. Management Science. 28, 808–820. https://doi.org/10.1287/mnsc.28.7.808
• Sagaert, Y., Svetunkov, I., 2022. Trace Forward Stepwise: Automatic Selection of Variables in No Time. https://doi.org/10.13140/RG.2.2.34995.35369
• Sangal, B.P., Biswas, A.K., 1970. The 3-Parameter Lognormal Distribution Applications in Hydrology. Water Resources Research. 6, 505–515. https://doi.org/10.1029/WR006i002p00505
• Schwertman, N.C., Gilks, A.J., Cameron, J., 1990. A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations. The American Statistician. 44, 38–39. https://doi.org/10.1080/00031305.1990.10475690
• Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples)†. Biometrika. 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591
• Sichel, H.S., Dohm, C.E., Kleingeld, W.J., 1997. The logarithmic generalized inverse Gaussian distribution (LNGIG). South African Statistical Journal. 31, 125–149. https://hdl.handle.net/10520/AJA0038271X{\_}560
• Silver, E.A., Pyke, D.F., Thomas, D.J., 2016. Inventory and Production Management in Supply Chains. 4th Edition. Routledge; CRC Press.
• Snyder, R.D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal Statistical Society, Series B (Methodological). 47, 272–276. https://doi.org/10.1111/j.2517-6161.1985.tb01355.x
• Snyder, R.D., Ord, J.K., Koehler, A.B., McLaren, K.R., Beaumont, A.N., 2017. Forecasting compositional time series: A state space approach. International Journal of Forecasting. 33, 502–512. https://doi.org/10.1016/j.ijforecast.2016.11.008
• Socci, N., Lee, D., Seung, H.S., 1997. The rectified gaussian distribution, in: Jordan, M., Kearns, M., Solla, S. (Eds.), Advances in Neural Information Processing Systems. MIT Press. https://proceedings.neurips.cc/paper/1997/file/28fc2782ea7ef51c1104ccf7b9bea13d-Paper.pdf
• Spavound, S., Kourentzes, N., 2022. Making Forecasts More Trustworthy. Foresight: The International Journal of Applied Forecasting. 66, 20–23.
• Steven G., J., 2021. The NLopt nonlinear-optimization package. https://nlopt.readthedocs.io/ (version: 2021-11-01)
• Stock, J.H., Watson, M.W., 2004. Combination forecasts of output growth in a seven-country data set. Journal of Forecasting. 23, 405–430. https://doi.org/10.1002/for.928
• Svetunkov, I., 2023c. Smooth forecasting with the smooth package in R. https://doi.org/10.48550/arXiv.2301.01790
• Svetunkov, I., 2023a. Greybox: Toolbox for model building and forecasting. https://github.com/config-i1/greybox R package version 1.0.9.41001
• Svetunkov, I., 2023b. Smooth: Forecasting using state space models. https://github.com/config-i1/smooth R package version 3.2.1.41011
• Svetunkov, I., 2022. Statistics for business analytics. https://openforecast.org/sba/ (version: 31.10.2022)
• Svetunkov, I., 2019. Are you sure you’re precise? Measuring accuracy of point forecasts. https://forecasting.svetunkov.ru/en/2019/08/25/are-you-sure-youre-precise-measuring-accuracy-of-point-forecasts/ (version: 2019-08-25)
• Svetunkov, I., 2017. Naughty APEs and the quest for the holy grail. https://forecasting.svetunkov.ru/en/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/ (version: 2017-07-29)
• Svetunkov, I., Boylan, J.E., 2022. Dealing with Positive Data Using Pure Multiplicative ETS Models.
• Svetunkov, I., Boylan, J.E., 2020. State-space ARIMA for supply-chain forecasting. International Journal of Production Research. 58, 818–827. https://doi.org/10.1080/00207543.2019.1600764
• Svetunkov, I., Boylan, J.E., 2019. Multiplicative state-space models for intermittent time series. https://doi.org/10.13140/RG.2.2.35897.06242
• Svetunkov, I., Kourentzes, N., Killick, R., 2021. Multi-step Estimators and Shrinkage Effect in Time Series Models. https://doi.org/10.13140/RG.2.2.17854.31043
• Svetunkov, I., Kourentzes, N., Ord, J.K., 2022. Complex exponential smoothing. Naval Research Logistics (NRL). 31. https://doi.org/10.1002/nav.22074
• Svetunkov, I., Petropoulos, F., 2018. Old dog, new tricks: a modelling view of simple moving averages. International Journal of Production Research. 56, 6034–6047. https://doi.org/10.1080/00207543.2017.1380326
• Svetunkov, I., Pritularga, K.F., 2023. Legion: Forecasting using multivariate models. https://github.com/config-i1/legion R package version 0.1.2
• Svetunkov, I., Svetunkov, S., 2014. Forecasting methods. Textbook for universities. Urait, Moscow.
• Svetunkov, S., 1985. Adaptive methods in the process of optimisation of regimes of electricity consumption.
• Tashman, L.J., 2000. Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting. 16, 437–450. https://doi.org/10.1016/S0169-2070(00)00065-0
• Taylor, J.W., 2020. Evaluating quantile-bounded and expectile-bounded interval forecasts. International Journal of Forecasting. 37. https://doi.org/10.1016/j.ijforecast.2020.09.007
• Taylor, J.W., 2010. Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research. 204, 139–152. https://doi.org/10.1016/j.ejor.2009.10.003
• Taylor, J.W., 2008. An evaluation of methods for very short-term load forecasting using minute-by-minute British data. International Journal of Forecasting. 24, 645–658. https://doi.org/10.1016/j.ijforecast.2008.07.007
• Taylor, James W., 2003a. Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting. 19, 715–725. https://doi.org/10.1016/S0169-2070(03)00003-7
• Taylor, James W., 2003b. Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society. 54, 799–805. https://doi.org/10.1057/palgrave.jors.2601589
• Taylor, J.W., Bunn, D.W., 1999. A Quantile Regression Approach to Generating Prediction Intervals. Management Science. 45, 225–237. https://doi.org/10.1287/mnsc.45.2.225
• Teunter, R.H., Syntetos, A.A., Babai, M.Z., 2011. Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research. 214, 606–615. https://doi.org/10.1016/j.ejor.2011.05.018
• Tibshirani, R., 1996. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological). 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
• Tofallis, C., 2015. A better measure of relative prediction accuracy for model selection and model estimation. The Journal of the Operational Research Society. 66, 1352–1362. https://doi.org/10.2307/24505756
• Trapero, J.R., Cardós, M., Kourentzes, N., 2019. Empirical safety stock estimation based on kernel and GARCH models. Omega (United Kingdom). 84, 199–211. https://doi.org/10.1016/j.omega.2018.05.004
• Wallström, P., Segerstedt, A., 2010. Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics. 128, 625–636. https://doi.org/10.1016/j.ijpe.2010.07.013
• Warren M. Persons, 1919. General Considerations and Assumptions. The Review of Economics and Statistics. 1, 5–107. https://doi.org/10.2307/1928754
• Wasserstein, R.L., Lazar, N.A., 2016. The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician. 70, 129–133. https://doi.org/10.1080/00031305.2016.1154108
• Weller, M., Crone, S.F., 2012. Supply chain forecasting: Best practices & benchmarking study. Lancaster Centre for Forecasting.
• White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 48, 817–838. https://doi.org/10.2307/1912934
• Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin. 1, 80–83. https://doi.org/10.2307/3001968
• Winters, P.R., 1960. Forecasting Sales by Exponentially Weighted Moving Averages. Management Science. 6, 324–342. https://doi.org/10.1287/mnsc.6.3.324