This book is in Open Review. I want your feedback to make the book better for you and other readers. To add your annotation, select some text and then click the on the pop-up menu. To see the annotations of others, click the button in the upper right hand corner of the page

References

• Akram, M., Hyndman, R.J., Ord, J.K., 2009. Exponential Smoothing and Non-negative Data. Australian & New Zealand Journal of Statistics. 51, 415–432. https://doi.org/10.1111/j.1467-842X.2009.00555.x
• Assimakopoulos, V., Nikolopoulos, K., 2000. The theta model: a decomposition approach to forecasting. International Journal of Forecasting. 16, 521–530. https://doi.org/10.1016/S0169-2070(00)00066-2
• Athanasopoulos, G., Hyndman, R.J., Song, H., Wu, D.C., 2011. The tourism forecasting competition. International Journal of Forecasting. 27, 822–844. https://doi.org/10.1016/j.ijforecast.2010.04.009
• Barrow, D., Kourentzes, N., Sandberg, R., Niklewski, J., 2020. Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications. 160, 113637. https://doi.org/10.1016/j.eswa.2020.113637
• Bergmeir, C., Hyndman, R.J., Benítez, J.M., 2016. Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting. 32, 303–312. https://doi.org/10.1016/j.ijforecast.2015.07.002
• Box, G., Jenkins, G., 1976. Time series analysis: forecasting and control. Holden-day, Oakland, California.
• Boylan, J.E., Syntetos, A.A., 2021. Intermittent Demand Forecasting. Context, Methods and Applications. John Wiley & Sons Ltd, 111 River st., Hoboken, NJ 07030, USA.
• Brenner, J.L., D’Esopo, D.a., Fowler, a.G., 1968. Difference Equations in Forecasting Formulas. Management Science. 15, 141–159. https://doi.org/10.1287/mnsc.15.3.141
• Brown, R.G., 1956. Exponential Smoothing for predicting demand.
• Burnham, K.P., Anderson, D.R., 2004. Model Selection and Multimodel Inference. Springer New York. https://doi.org/10.1007/b97636
• Chatfield, C., 1996. Model uncertainty and forecast accuracy. Journal of Forecasting. 15, 495–508. https://doi.org/10.1002/(SICI)1099-131X(199612)15:7<495::AID-FOR640>3.3.CO;2-F
• Chatfield, C., 1977. Some Recent Developments in Time-Series Analysis. Journal of the Royal Statistical Society. Series A (General). 140, 492. https://doi.org/10.2307/2345281
• Claeskens, G., Magnus, J.R., Vasnev, A.L., Wang, W., 2016. The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting. 32, 754–762. https://doi.org/10.1016/j.ijforecast.2015.12.005
• Clements, M., Hendry, D., 1998. Forecasting economic time series. Cambridge University Press, Cambridge.
• Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I., 1990. STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics. 6, 3–73.
• Croston, J.D., 1972. Forecasting and Stock Control for Intermittent Demands. Operational Research Quarterly (1970-1977). 23, 289. https://doi.org/10.2307/3007885
• Davydenko, A., Fildes, R., 2013. Measuring Forecasting Accuracy: The Case Of Judgmental Adjustments To SKU-Level Demand Forecasts. International Journal of Forecasting. 29, 510–522. https://doi.org/10.1016/j.ijforecast.2012.09.002
• De Livera, A.M., 2010. Exponentially weighted methods for multiple seasonal time series. International Journal of Forecasting. 26, 655–657. https://doi.org/10.1016/j.ijforecast.2010.05.010
• De Livera, A.M., Hyndman, R.J., Snyder, R.D., 2011. Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing. Journal of the American Statistical Association. 106, 1513–1527. https://doi.org/10.1198/jasa.2011.tm09771
• Demšar, J., 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research. 7, 1–30. https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
• Fildes, R., Hibon, M., Makridakis, S., Meade, N., 1998. Generalising about univariate forecasting methods: further empirical evidence. International Journal of Forecasting. 14, 339–358. https://doi.org/10.1016/S0169-2070(98)00009-0
• Gardner, E.S., 2006. Exponential smoothing: The state of the art-Part II. International Journal of Forecasting. 22, 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005
• Gardner, E.S., 1985. Exponential smoothing: The state of the art. Journal of Forecasting. 4, 1–28. https://doi.org/10.1002/for.3980040103
• Gardner, E.S., Diaz-Saiz, J., 2008. Exponential smoothing in the telecommunications data. International Journal of Forecasting. 24, 170–174. https://doi.org/10.1016/j.ijforecast.2007.05.002
• Gardner, E.S., McKenzie, E., 1989. Seasonal Exponential Smoothing with Damped Trends. Management Science. 35, 372–376. https://doi.org/10.1287/mnsc.35.3.372
• Gardner, E.S., McKenzie, E., 1985. Forecasting trends in time series. Management Science. 31, 1237–1246. https://doi.org/10.1016/0169-2070(86)90056-7
• Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association. 102, 359–378. https://doi.org/10.1198/016214506000001437
• Gould, P.G., Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J., Vahid-Araghi, F., 2008. Forecasting time series with multiple seasonal patterns. European Journal of Operational Research. 191, 205–220. https://doi.org/10.1016/j.ejor.2007.08.024
• Hanck, C., Arnold, M., Gerber, A., Schmelzer, M., 2020. Introduction to Econometrics with R. https://www.econometrics-with-r.org/index.html (version: 2020-08-12)
• Holt, C.C., 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting. 20, 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015
• Hyndman, R.J., Khandakar, Y., 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software. 26, 1–22. https://www.jstatsoft.org/article/view/v027i03
• Hyndman, R.J., Koehler, A.B., 2006. Another look at measures of forecast accuracy. International Journal of Forecasting. 22, 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001
• Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D., 2008. Forecasting with Exponential Smoothing. Springer Berlin Heidelberg.
• Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S., 2002. A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting. 18, 439–454. https://doi.org/10.1016/S0169-2070(01)00110-8
• James, G., Witen, D., Hastie, T., Tibshirani, R., 2017. An Introduction to Statistical Learning with Applications in R. https://doi.org/10.1016/j.peva.2007.06.006
• Jose, V.R.R., Winkler, R.L., 2008. Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting. 24, 163–169. https://doi.org/10.1016/j.ijforecast.2007.06.001
• Koehler, A.B., Snyder, R.D., Ord, J.K., Beaumont, A., 2012. A study of outliers in the exponential smoothing approach to forecasting. International Journal of Forecasting. 28, 477–484. https://doi.org/10.1016/j.ijforecast.2011.05.001
• Koenker, R., Bassett, G., 1978. Regression Quantiles. Econometrica. 46, 33. https://doi.org/10.2307/1913643
• Kolassa, S., 2016. Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting. 32, 788–803. https://doi.org/10.1016/j.ijforecast.2015.12.004
• Kolassa, S., 2011. Combining exponential smoothing forecasts using Akaike weights. International Journal of Forecasting. 27, 238–251. https://doi.org/10.1016/j.ijforecast.2010.04.006
• Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O., 2005. The M3 competition: Statistical tests of the results. International Journal of Forecasting. 21, 397–409. https://doi.org/10.1016/j.ijforecast.2004.10.003
• Kourentzes, N., 2014. On intermittent demand model optimisation and selection. International Journal of Production Economics. 156, 180–190. https://doi.org/10.1016/j.ijpe.2014.06.007
• Kourentzes, N., Barrow, D., Petropoulos, F., 2019a. Another look at forecast selection and combination: Evidence from forecast pooling. International Journal of Production Economics. 209, 226–235. https://doi.org/10.1016/j.ijpe.2018.05.019
• Kourentzes, N., Li, D., Strauss, A.K., 2019b. Unconstraining methods for revenue management systems under small demand. Journal of Revenue and Pricing Management. 18, 27–41.
• Kourentzes, N., Trapero, J.R., 2018. On the use of multi-step cost functions for generating forecasts. Department of Management Science Working Paper Series.
• Kourentzes, N., Trapero, J.R., Barrow, D.K., 2019c. Optimising forecasting models for inventory planning. International Journal of Production Economics. 107597. https://doi.org/10.1016/j.ijpe.2019.107597
• Lichtendahl, K.C., Grushka-Cockayne, Y., Winkler, R.L., 2013. Is It Better to Average Probabilities or Quantiles? Management Science. 59, 1594–1611. https://doi.org/10.1287/mnsc.1120.1667
• Makridakis, S., Andersen, A.P., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., Winkler, R.L., 1982. The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting. 1, 111–153. https://doi.org/10.1002/for.3980010202
• Makridakis, S., Hibon, M., 2000. The M3-Competition: results, conclusions and implications. International Journal of Forecasting. 16, 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1
• Makridakis, S., Hibon, M., 1997. ARMA models and the Box–Jenkins methodology. Journal of Forecasting. 16, 147–163. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
• McKenzie, E., 1976. A Comparison of Some Standard Seasonal Forecasting Systems. The Statistician. 25, 3. https://doi.org/10.2307/2988127
• Mudholkar, G.S., Tian, L., 2002. An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test. Journal of Statistical Planning and Inference. 102, 211–221. https://doi.org/10.1016/S0378-3758(01)00099-4
• Muth, J.F., 1960. Optimal Properties of Exponentially Weighted Forecasts. Journal of the American Statistical Association. 55, 299–306. https://doi.org/10.2307/2281742
• Nerlove, M., Wage, S., 1964. On the Optimality of Adaptive Forecasting. Management Science. 10, 207–224. https://doi.org/10.1287/mnsc.10.2.207
• Ord, J.K., Koehler, A.B., Snyder, R.D., 1997. Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association. 92, 1621–1629. https://doi.org/10.1080/01621459.1997.10473684
• Osman, A.F., King, M.L., 2015. A new approach to forecasting based on exponential smoothing with independent regressors. http://econpapers.repec.org/paper/mshebswps/2015-2.htm
• Pegels, C.C., 1969. Exponential Forecasting : Some New Variations. Management Science. 15, 311–315. https://www.jstor.org/stable/2628137
• Petropoulos, F., Hyndman, R.J., Bergmeir, C., 2018a. Exploring the sources of uncertainty: Why does bagging for time series forecasting work? European Journal of Operational Research. 268, 545–554. https://doi.org/10.1016/j.ejor.2018.01.045
• Petropoulos, F., Kourentzes, N., 2015. Forecast combinations for intermittent demand. Journal of the Operational Research Society. 66, 914–924. https://doi.org/10.1057/jors.2014.62
• Petropoulos, F., Kourentzes, N., Nikolopoulos, K., Siemsen, E., 2018b. Judgmental selection of forecasting models. Journal of Operations Management. 60, 34–46. https://doi.org/10.1016/j.jom.2018.05.005
• Petropoulos, F., Svetunkov, I., 2020. A simple combination of univariate models. International Journal of Forecasting. 36, 110–115. https://doi.org/10.1016/j.ijforecast.2019.01.006
• Roberts, S.A., 1982. A General Class of Holt-Winters Type Forecasting Models. Management Science. 28, 808–820. https://doi.org/10.1287/mnsc.28.7.808
• Sagaert, Y.R., Svetunkov, I., 2021. Variables Selection Using Partial Correlations and Information Criteria.
• Sangal, B.P., Biswas, A.K., 1970. The 3-Parameter Lognormal Distribution Applications in Hydrology. Water Resources Research. 6, 505–515. https://doi.org/10.1029/WR006i002p00505
• Snyder, R.D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal Statistical Society, Series B (Methodological). 47, 272–276. https://doi.org/10.1111/j.2517-6161.1985.tb01355.x
• Snyder, R.D., Ord, J.K., Koehler, A.B., McLaren, K.R., Beaumont, A.N., 2017. Forecasting compositional time series: A state space approach. International Journal of Forecasting. 33, 502–512. https://doi.org/10.1016/j.ijforecast.2016.11.008
• Stock, J.H., Watson, M.W., 2004. Combination forecasts of output growth in a seven-country data set. Journal of Forecasting. 23, 405–430. https://doi.org/10.1002/for.928
• Svetunkov, I., 2021c. Statistics for business analytics. https://openforecast.org/sba/ (version: [01.09.2021])
• Svetunkov, I., 2021a. Greybox: Toolbox for model building and forecasting. https://github.com/config-i1/greybox R package version 1.0.1.41002
• Svetunkov, I., 2021b. Smooth: Forecasting using state space models. https://github.com/config-i1/smooth R package version 3.1.3.41013
• Svetunkov, I., 2019. Are you sure you’re precise? Measuring accuracy of point forecasts. https://forecasting.svetunkov.ru/en/2019/08/25/are-you-sure-youre-precise-measuring-accuracy-of-point-forecasts/ (version: 2019-08-25)
• Svetunkov, I., 2017. Naughty APEs and the quest for the holy grail. https://forecasting.svetunkov.ru/en/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/ (version: 2017-07-29)
• Svetunkov, I., Boylan, J.E., 2020a. Dealing with Positive Data Using Pure Multiplicative ETS Models.
• Svetunkov, I., Boylan, J.E., 2020b. State-space ARIMA for supply-chain forecasting. International Journal of Production Research. 58, 818–827. https://doi.org/10.1080/00207543.2019.1600764
• Svetunkov, I., Boylan, J.E., 2019. Multiplicative state-space models for intermittent time series. https://doi.org/10.13140/RG.2.2.35897.06242
• Svetunkov, I., Kourentzes, N., Killick, R., 2021. Multi-step Estimators and Shrinkage Effect in Time Series Models. https://doi.org/10.13140/RG.2.2.17854.31043
• Svetunkov, I., Petropoulos, F., 2018. Old dog, new tricks: a modelling view of simple moving averages. International Journal of Production Research. 56, 6034–6047. https://doi.org/10.1080/00207543.2017.1380326
• Svetunkov, I., Svetunkov, S., 2014. Forecasting methods. Textbook for universities. Urait, Moscow.
• Svetunkov, S., 1985. Adaptive methods in the process of optimisation of regimes of electricity consumption.
• Tashman, L.J., 2000. Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting. 16, 437–450. https://doi.org/10.1016/S0169-2070(00)00065-0
• Taylor, J.W., 2020. Evaluating quantile-bounded and expectile-bounded interval forecasts. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.09.007
• Taylor, J.W., 2010. Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research. 204, 139–152. https://doi.org/10.1016/j.ejor.2009.10.003
• Taylor, J.W., 2008. An evaluation of methods for very short-term load forecasting using minute-by-minute British data. International Journal of Forecasting. 24, 645–658. https://doi.org/10.1016/j.ijforecast.2008.07.007
• Taylor, James W., 2003a. Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting. 19, 715–725. https://doi.org/10.1016/S0169-2070(03)00003-7
• Taylor, James W., 2003b. Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society. 54, 799–805. https://doi.org/10.1057/palgrave.jors.2601589
• Taylor, J.W., Bunn, D.W., 1999. A Quantile Regression Approach to Generating Prediction Intervals. Management Science. 45, 225–237. https://doi.org/10.1287/mnsc.45.2.225
• Teunter, R.H., Syntetos, A.A., Babai, M.Z., 2011. Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research. 214, 606–615. https://doi.org/10.1016/j.ejor.2011.05.018
• Tibshirani, R., 1996. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological). 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
• Warren M. Persons, 1919. General Considerations and Assumptions. The Review of Economics and Statistics. 1, 5–107. https://doi.org/10.2307/1928754
• Wikipedia, 2021e. Differential entropy. https://en.wikipedia.org/wiki/Differential_entropy (version: 2021-04-22)
• Wikipedia, 2021f. Durbin–Watson statistic. https://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic (version: 2021-05-13)
• Wikipedia, 2021g. Ljung–Box test. https://en.wikipedia.org/wiki/Ljung%E2%80%93Box_test (version: 2021-05-13)
• Wikipedia, 2021h. Breusch–Godfrey test. https://en.wikipedia.org/wiki/Breusch%E2%80%93Godfrey_test (version: 2021-05-13)
• Wikipedia, 2021k. Bartlett’s test. https://en.wikipedia.org/wiki/Bartlett%27s_test (version: 2021-05-28)
• Wikipedia, 2021i. White test. https://en.wikipedia.org/wiki/White_test (version: 2021-05-28)
• Wikipedia, 2021j. Breusch–Pagan test. https://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test (version: 2021-05-28)
• Wikipedia, 2021l. Shapiro-Wilk test. https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test (version: 2021-06-09)
• Wikipedia, 2021m. Kolmogorov-Smirnov test. https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test (version: 2021-06-09)
• Wikipedia, 2021a. F-test. https://en.wikipedia.org/wiki/F-test (version: 2021-07-08)
• Wikipedia, 2021b. Student’s t-test. https://en.wikipedia.org/wiki/Student%27s_t-test (version: 2021-07-08)
• Wikipedia, 2021c. Friedman test. https://en.wikipedia.org/wiki/Friedman_test (version: 2021-07-08)
• Wikipedia, 2021d. Wilcoxon signed-rank test. https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test (version: 2021-07-08)
• Wikipedia, 2021o. Rectified Gaussian distribution. https://en.wikipedia.org/wiki/Rectified_Gaussian_distribution (version: 2021-07-18)
• Wikipedia, 2021n. Cramér–Rao bound. https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound (version: 2021-07-18)
• Wikipedia, 2020. Cross-validation (statistics). https://en.wikipedia.org/wiki/Cross-validation_(statistics) (version: 2020-11-04)
• Winters, P.R., 1960. Forecasting Sales by Exponentially Weighted Moving Averages. Management Science. 6, 324–342. https://doi.org/10.1287/mnsc.6.3.324
• Yu, K., Zhang, J., 2005. A three-parameter asymmetric laplace distribution and its extension. Communications in Statistics - Theory and Methods. 34, 1867–1879. https://doi.org/10.1080/03610920500199018