This book is in Open Review. I want your feedback to make the book better for you and other readers. To add your annotation, select some text and then click the on the pop-up menu. To see the annotations of others, click the button in the upper right hand corner of the page

References

Akaike, H. 1974. “A new look at the statistical model identification.” IEEE Transactions on Automatic Control 19 (6): 716–23. https://doi.org/10.1109/TAC.1974.1100705.

Akram, Muhammad, Rob J. Hyndman, and J. Keith Ord. 2009. “Exponential Smoothing and Non-negative Data.” Australian & New Zealand Journal of Statistics 51 (4): 415–32. https://doi.org/10.1111/j.1467-842X.2009.00555.x.

Athanasopoulos, George, Rob J Hyndman, Haiyan Song, and Doris C Wu. 2011. “The tourism forecasting competition.” International Journal of Forecasting 27 (3): 822–44. https://doi.org/10.1016/j.ijforecast.2010.04.009.

Barrow, Devon, Nikolaos Kourentzes, Rickard Sandberg, and Jacek Niklewski. 2020. “Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning.” Expert Systems with Applications 160: 113637. https://doi.org/10.1016/j.eswa.2020.113637.

Box, George, and Gwilym Jenkins. 1976. Time series analysis: forecasting and control. Holden-day, Oakland, California.

Brenner, J L, D a. D’Esopo, and a. G Fowler. 1968. “Difference Equations in Forecasting Formulas.” Management Science 15 (3): 141–59. https://doi.org/10.1287/mnsc.15.3.141.

Brown, Robert G. 1956. “Exponential Smoothing for predicting demand.” Cambridge 42, Massachusetts: Arthur D. Little, Inc.

Burnham, Kenneth P, and David R Anderson. 2004. Model Selection and Multimodel Inference. Springer New York. https://doi.org/10.1007/b97636.

Chatfield, C. 1977. “Some Recent Developments in Time-Series Analysis.” Journal of the Royal Statistical Society. Series A (General) 140 (4): 492. https://doi.org/10.2307/2345281.

Clements, Michael, and David Hendry. 1998. Forecasting economic time series. Cambridge: Cambridge University Press.

Croston, J D. 1972. “Forecasting and Stock Control for Intermittent Demands.” Operational Research Quarterly (1970-1977) 23 (3): 289. https://doi.org/10.2307/3007885.

Davydenko, Andrey, and Robert Fildes. 2013. “Measuring Forecasting Accuracy: The Case of Judgmental Adjustments to SKU-Level Demand Forecasts.” International Journal of Forecasting 29 (3): 510–22. https://doi.org/10.1016/j.ijforecast.2012.09.002.

De Livera, Alysha M. 2010. “Exponentially weighted methods for multiple seasonal time series.” International Journal of Forecasting 26 (4): 655–57. https://doi.org/10.1016/j.ijforecast.2010.05.010.

De Livera, Alysha M, Rob J Hyndman, and Ralph D Snyder. 2011. “Forecasting Time Series with Complex Seasonal Patterns Using Exponential Smoothing.” Journal of the American Statistical Association 106 (496): 1513–27. https://doi.org/10.1198/jasa.2011.tm09771.

Fildes, Robert, Michèle Hibon, Spyros Makridakis, and Nigel Meade. 1998. “Generalising about univariate forecasting methods: further empirical evidence.” International Journal of Forecasting 14 (3): 339–58. https://doi.org/10.1016/S0169-2070(98)00009-0.

Gardner, Everette S. 1985. “Exponential smoothing: The state of the art.” Journal of Forecasting 4 (1): 1–28. https://doi.org/10.1002/for.3980040103.

———. 2006. “Exponential smoothing: The state of the art-Part II.” International Journal of Forecasting 22 (4): 637–66. https://doi.org/10.1016/j.ijforecast.2006.03.005.

Gardner, Everette S, and Joaquin Diaz-Saiz. 2008. “Exponential smoothing in the telecommunications data.” International Journal of Forecasting 24 (1): 170–74. https://doi.org/10.1016/j.ijforecast.2007.05.002.

Gardner, Everette S, and Ed McKenzie. 1985. “Forecasting trends in time series.” Management Science 31 (10): 1237–46. https://doi.org/10.1016/0169-2070(86)90056-7.

———. 1989. “Seasonal Exponential Smoothing with Damped Trends.” Management Science 35 (3): 372–76. https://doi.org/10.1287/mnsc.35.3.372.

Geraci, Marco, and Matteo Bottai. 2007. “Quantile regression for longitudinal data using the asymmetric Laplace distribution.” Biostatistics 8 (1): 140–54. https://doi.org/10.1093/biostatistics/kxj039.

Gneiting, Tilmann, and Adrian E. Raftery. 2007. “Strictly proper scoring rules, prediction, and estimation.” Journal of the American Statistical Association 102 (477): 359–78. https://doi.org/10.1198/016214506000001437.

Gould, Phillip G, Anne B Koehler, J Keith Ord, Ralph D Snyder, Rob J Hyndman, and Farshid Vahid-Araghi. 2008. “Forecasting time series with multiple seasonal patterns.” European Journal of Operational Research 191 (1): 205–20. https://doi.org/10.1016/j.ejor.2007.08.024.

Hanck, Christoph, Martin Arnold, Alexander Gerber, and Martin Schmelzer. 2020. “Introduction to Econometrics with R.” Bookdown. https://www.econometrics-with-r.org/index.html.

Holt, Charles C. 2004. “Forecasting seasonals and trends by exponentially weighted moving averages.” International Journal of Forecasting 20 (1): 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015.

Hyndman, Rob J., and George Athanasopoulos. 2018. Forecasting: Principles and Practice, 2nd Edition. Accessed on 01.04.2020. OTexts: Melbourne, Australia. https://OTexts.com/fpp2.

Hyndman, Rob J, and Yeasmin Khandakar. 2008. “Automatic Time Series Forecasting: The Forecast Package for R.” Journal of Statistical Software 26 (3): 1–22. https://www.jstatsoft.org/article/view/v027i03.

Hyndman, Rob J, and Anne B Koehler. 2006. “Another look at measures of forecast accuracy.” International Journal of Forecasting 22 (4): 679–88. https://doi.org/10.1016/j.ijforecast.2006.03.001.

Hyndman, Rob J., Anne B. Koehler, J. Keith Ord, and Ralph D. Snyder. 2008. Forecasting with Exponential Smoothing. Springer Berlin Heidelberg.

Hyndman, Rob J, Anne B Koehler, Ralph D Snyder, and Simone Grose. 2002. “A state space framework for automatic forecasting using exponential smoothing methods.” International Journal of Forecasting 18 (3): 439–54. https://doi.org/10.1016/S0169-2070(01)00110-8.

James, Gareth, Daniela Witen, Trevor Hastie, and Robert Tibshirani. 2017. An Introduction to Statistical Learning with Applications in R. Vol. 64. 9-12. https://doi.org/10.1016/j.peva.2007.06.006.

Koehler, Anne B, Ralph D Snyder, J Keith Ord, and Adrian Beaumont. 2012. “A study of outliers in the exponential smoothing approach to forecasting.” International Journal of Forecasting 28 (2): 477–84. https://doi.org/10.1016/j.ijforecast.2011.05.001.

Koenker, Roger, and Gilbert Bassett. 1978. “Regression Quantiles.” Econometrica 46 (1): 33. https://doi.org/10.2307/1913643.

Kolassa, Stephan. 2016. “Evaluating predictive count data distributions in retail sales forecasting.” International Journal of Forecasting 32 (3): 788–803. https://doi.org/10.1016/j.ijforecast.2015.12.004.

Kourentzes, Nikolaos, Dong Li, and Arne K Strauss. 2019. “Unconstraining Methods for Revenue Management Systems Under Small Demand.” Journal of Revenue and Pricing Management 18 (1): 27–41.

Kourentzes, Nikolaos, and Juan R Trapero. 2018. “On the Use of Multi-Step Cost Functions for Generating Forecasts.” Department of Management Science Working Paper Series.

Kourentzes, Nikolaos, Juan R Trapero, and Devon K Barrow. 2019. “Optimising forecasting models for inventory planning.” International Journal of Production Economics, no. November 2019: 107597. https://doi.org/10.1016/j.ijpe.2019.107597.

Makridakis, Spyros, A P Andersen, R Carbone, Robert Fildes, Michèle Hibon, R Lewandowski, J Newton, Emanuel Parzen, and Robert L Winkler. 1982. “The accuracy of extrapolation (time series) methods: Results of a forecasting competition.” Journal of Forecasting 1 (2): 111–53. https://doi.org/10.1002/for.3980010202.

Makridakis, Spyros, and Michèle Hibon. 1997. “ARMA models and the Box–Jenkins methodology.” Journal of Forecasting 16: 147–63. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X.

———. 2000. “The M3-Competition: results, conclusions and implications.” International Journal of Forecasting 16: 451–76. https://doi.org/10.1016/S0169-2070(00)00057-1.

McKenzie, Ed. 1976. “A Comparison of Some Standard Seasonal Forecasting Systems.” The Statistician 25 (1): 3. https://doi.org/10.2307/2988127.

McQuarrie, Allan D. 1999. “A small-sample correction for the Schwarz SIC model selection criterion.” Statistics {&} Probability Letters 44 (1): 79–86. https://doi.org/10.1016/S0167-7152(98)00294-6.

Muth, John F. 1960. “Optimal Properties of Exponentially Weighted Forecasts.” Journal of the American Statistical Association 55 (1): 299–306. https://doi.org/10.2307/2281742.

Nadarajah, Saralees. 2005. “A generalized normal distribution.” Journal of Applied Statistics 32 (7): 685–94. https://doi.org/10.1080/02664760500079464.

Nerlove, M., and S. Wage. 1964. “On the Optimality of Adaptive Forecasting.” Management Science 10 (2): 207–24. https://doi.org/10.1287/mnsc.10.2.207.

Ord, J Keith, Anne B Koehler, and Ralph D Snyder. 1997. “Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models.” Journal of the American Statistical Association 92 (440): 1621–9. https://doi.org/10.1080/01621459.1997.10473684.

Osman, A F, and Maxwell L King. 2015. “A new approach to forecasting based on exponential smoothing with independent regressors.” Monash University, Department of Econometrics; Business Statistics. http://econpapers.repec.org/paper/mshebswps/2015-2.htm.

Pegels, C Carl. 1969. “Exponential Forecasting : Some New Variations.” Management Science 15 (5): 311–15. https://www.jstor.org/stable/2628137.

Petropoulos, Fotios, and Nikolaos Kourentzes. 2015. “Forecast combinations for intermittent demand.” Journal of the Operational Research Society 66 (6): 914–24. https://doi.org/10.1057/jors.2014.62.

Petropoulos, Fotios, Nikolaos Kourentzes, Konstantinos Nikolopoulos, and Enno Siemsen. 2018. “Judgmental selection of forecasting models.” Journal of Operations Management 60 (May): 34–46. https://doi.org/10.1016/j.jom.2018.05.005.

Roberts, S. A. 1982. “A General Class of Holt-Winters Type Forecasting Models.” Management Science 28 (7): 808–20. https://doi.org/10.1287/mnsc.28.7.808.

Sagaert, Yves R., and Ivan Svetunkov. 2021. “Variables Selection Using Partial Correlations and Information Criteria.” Department of Management Science, Lancaster University.

Sangal, B.P., and Asit K. Biswas. 1970. “The 3-Parameter Lognormal Distribution Applications in Hydrology.” Water Resources Research 6 (2): 505–15. https://doi.org/10.1029/WR006i002p00505.

Schwarz, Gideon. 1978. “Estimating the Dimension of a Model.” The Annals of Statistics 6 (2): 461–64. https://doi.org/10.1214/aos/1176344136.

Snyder, Ralph D. 1985. “Recursive Estimation of Dynamic Linear Models.” Journal of the Royal Statistical Society, Series B (Methodological) 47 (2): 272–76. https://doi.org/10.1111/j.2517-6161.1985.tb01355.x.

Snyder, Ralph D., J. Keith Ord, Anne B. Koehler, Keith R. McLaren, and Adrian N. Beaumont. 2017. “Forecasting compositional time series: A state space approach.” International Journal of Forecasting 33 (2): 502–12. https://doi.org/10.1016/j.ijforecast.2016.11.008.

Sugiura, Nariaki. 1978. “Further analysis of the data by akaike’ s information criterion and the finite corrections.” Communications in Statistics - Theory and Methods 7 (1): 13–26. https://doi.org/10.1080/03610927808827599.

Svetunkov, Ivan. 2017. “Naughty Apes and the Quest for the Holy Grail.” Modern Forecasting. https://forecasting.svetunkov.ru/en/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/.

———. 2019. “Are You Sure You’re Precise? Measuring Accuracy of Point Forecasts.” Modern Forecasting. https://forecasting.svetunkov.ru/en/2019/08/25/are-you-sure-youre-precise-measuring-accuracy-of-point-forecasts/.

———. 2021a. Greybox: Toolbox for Model Building and Forecasting. https://github.com/config-i1/greybox.

———. 2021b. Smooth: Forecasting Using State Space Models. https://github.com/config-i1/smooth.

Svetunkov, Ivan, and John Boylan. 2019a. “Multiplicative state-space models for intermittent time series.” Department of Management Science, Lancaster University. https://doi.org/10.13140/RG.2.2.35897.06242.

Svetunkov, Ivan, and John E. Boylan. 2019b. “Multiplicative State-Space Models for Intermittent Time Series.” Department of Management Science, Lancaster University. https://doi.org/10.13140/RG.2.2.35897.06242.

———. 2020a. “Dealing with Positive Data Using Pure Multiplicative ETS Models.” Department of Management Science, Lancaster University.

———. 2020b. “State-space ARIMA for supply-chain forecasting.” International Journal of Production Research 58 (3): 818–27. https://doi.org/10.1080/00207543.2019.1600764.

Svetunkov, Ivan, Nikolaos Kourentzes, and Rebecca Killick. 2021. “Multi-step Estimators and Shrinkage Effect in Time Series Models.” Department of Management Science, Lancaster University. https://doi.org/10.13140/RG.2.2.17854.31043.

Svetunkov, Ivan, and Fotios Petropoulos. 2018. “Old dog, new tricks: a modelling view of simple moving averages.” International Journal of Production Research 56 (18): 6034–47. https://doi.org/10.1080/00207543.2017.1380326.

Svetunkov, Ivan, and Sergey Svetunkov. 2014. Forecasting methods. Textbook for universities. Moscow: Urait.

Svetunkov, Sergey. 1985. “Adaptive methods in the process of optimisation of regimes of electricity consumption.” Leningrad Engineering Economic Institute.

Tashman, Leonard J. 2000. “Out-of-sample tests of forecasting accuracy: An analysis and review.” International Journal of Forecasting 16 (4): 437–50. https://doi.org/10.1016/S0169-2070(00)00065-0.

Taylor, James W. 2003. “Exponential smoothing with a damped multiplicative trend.” International Journal of Forecasting 19 (4): 715–25. https://doi.org/10.1016/S0169-2070(03)00003-7.

———. 2020. “Evaluating quantile-bounded and expectile-bounded interval forecasts.” International Journal of Forecasting, no. xxxx. https://doi.org/10.1016/j.ijforecast.2020.09.007.

Taylor, James W. 2003. “Short-term electricity demand forecasting using double seasonal exponential smoothing.” Journal of the Operational Research Society 54 (8): 799–805. https://doi.org/10.1057/palgrave.jors.2601589.

———. 2008. “An evaluation of methods for very short-term load forecasting using minute-by-minute British data.” International Journal of Forecasting 24 (4): 645–58. https://doi.org/10.1016/j.ijforecast.2008.07.007.

———. 2010. “Triple seasonal methods for short-term electricity demand forecasting.” European Journal of Operational Research 204 (1): 139–52. https://doi.org/10.1016/j.ejor.2009.10.003.

Teunter, Ruud H, Aris A Syntetos, and M. Zied Babai. 2011. “Intermittent demand: Linking forecasting to inventory obsolescence.” European Journal of Operational Research 214 (3): 606–15. https://doi.org/10.1016/j.ejor.2011.05.018.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection Via the Lasso.” Journal of the Royal Statistical Society: Series B (Methodological) 58 (1): 267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

Warren M. Persons. 1919. “General Considerations and Assumptions.” The Review of Economics and Statistics 1 (1): 5–107. https://doi.org/10.2307/1928754.

Wasserstein, Ronald L., and Nicole A. Lazar. 2016. “The ASA’s Statement on p-Values: Context, Process, and Purpose.” American Statistician 70 (2): 129–33. https://doi.org/10.1080/00031305.2016.1154108.

Wikipedia. 2020a. “Bias of Estimator: Sample Variance.” Wikipedia. https://en.wikipedia.org/wiki/Bias_of_an_estimator#Sample_variance.

———. 2020b. “Cross-Validation (Statistics).” Wikipedia. https://en.wikipedia.org/wiki/Cross-validation_(statistics).

———. 2020c. “Efficiency (Statistics): Asymptotic Efficiency.” Wikipedia. https://en.wikipedia.org/wiki/Efficiency_(statistics)#Asymptotic_efficiency.

———. 2020d. “Likelihood-Ratio Test.” Wikipedia. https://en.wikipedia.org/wiki/Likelihood-ratio_test.

Winters, P R. 1960. “Forecasting Sales by Exponentially Weighted Moving Averages.” Management Science 6 (3): 324–42. https://doi.org/10.1287/mnsc.6.3.324.

Yu, Keming, and Jin Zhang. 2005. “A three-parameter asymmetric laplace distribution and its extension.” Communications in Statistics - Theory and Methods 34 (9-10): 1867–79. https://doi.org/10.1080/03610920500199018.