Why zeroes happen

Anna Sroginis and I have been working on a new approach for intermittent demand classification over the past year. We’ve taken a fresh look at the problem, starting by asking: why do zeroes happen? Let’s discuss why indeed. First, a quick note: it’s a mistake to define intermittent demand simply as “demand with zeroes”. That […]

Introduction to intermittent demand

Sometimes, when you need to forecast demand, you may notice that the recorded data contains zeroes. There are several possible reasons for this, but today we’ll briefly discuss one of them. Welcome to the world of “intermittent demand”! Intermittent demand is the demand that happens at irregular frequency (Svetunkov & Boylan, 2023). This means you […]

iETS: State space model for intermittent demand forecasting

Authors: Ivan Svetunkov, John E. Boylan Journal: International Journal of Production Economics Abstract: Inventory decisions relating to items that are demanded intermittently are particularly challenging. Decisions relating to termination of sales of product often rely on point estimates of the mean demand, whereas replenishment decisions depend on quantiles from interval estimates. It is in this […]

John E. Boylan

I met John in 2014 when he joined the Department of Management Science at Lancaster University. Back then, I was in my second year of PhD, and as a teaching assistant, I helped deliver workshops for some modules. We met at the departmental Christmas party, and John asked me whether I was the very same […]

International Symposium on Forecasting 2019

The ISF2019 took place in Thessaloniki, Greece. This time I presented a spin-off of my research on intermittent demand in retail, entitled as “What about those sweet melons? Using mixture models for demand forecasting in retail”. The idea is quite trivial and simple: use mixture distribution regressions (e.g. logistic and log-normal distributions) in order to […]