Don’t use MAE-based error measures for intermittent demand!

I’m currently doing a literature review for one of my papers on intermittent demand forecasting with machine learning, and I’ve noticed a recurring fundamental mistake in several recently published papers, even in respectable peer-reviewed journals. The mistake? Using error measures based on the Mean Absolute Error (MAE). This is a crime against the humanity when […]

Why zeroes happen

Anna Sroginis and I have been working on a new approach for intermittent demand classification over the past year. We’ve taken a fresh look at the problem, starting by asking: why do zeroes happen? Let’s discuss why indeed. First, a quick note: it’s a mistake to define intermittent demand simply as “demand with zeroes”. That […]

Why is it hard to beat the Simple Moving Average?

Simple Moving Average (SMA) is one of the basic forecasting methods. It doesn’t rely on time series decomposition, doesn’t have a seasonal component, and doesn’t include explanatory variables. Yet, in a supply chain context, SMA is sometimes a tough benchmark to beat. Why? First things first, SMA is simply the arithmetic mean of several recent […]

What about the training/test sets?

Another question my students sometimes ask is how to define the sizes for the training and test sets in a forecasting experiment. If you’ve done data mining or machine learning, you’re likely familiar with this concept. But when it comes to forecasting, there are a few nuances. Let’s discuss. First and foremost, in forecasting, the […]

How to choose forecast horizon?

One of the questions my students sometimes ask is how to set the forecast horizon. The answer depends largely on the task at hand, but there are still some guidelines. First, the forecast horizon depends on data granularity. A “year ahead” forecast on monthly data means forecasting 12 steps ahead, while for daily data, it […]