You probably have already noticed that we are in a pandemic of COVID-19 these days (breaking news: the UK has just announced a lockdown due to the virus). The number of news, memes and noise on the topic coming from around the world is astonishing! What is also astonishing is the number of posts on […]
Author: Ivan Svetunkov
M-competitions, from M4 to M5: reservations and expectations
UPDATE: I have also written a short post on “The role of M competitions in forecasting“, which gives historical perspective and a brief overview of the main findings of the previous competitions. Some of you might have noticed that the guidelines for the M5 competition have finally been released. Those of you who have previously […]
Multiplicative State-Space Models for Intermittent Time Series, 2019
More than 2 years ago I published on this website a working paper entitled “Multiplicative State-Space Models for Intermittent Time Series“, written by John Boylan and I. This was an early version of the paper, which we submitted to International Journal of Forecasting on 31st January 2017. More than two years later (on 11th July […]
What about all those zeroes? Measuring performance of models on intermittent demand
In one of the previous posts, we have discussed how to measure the accuracy of forecasting methods on the continuous data. All these MAE, RMSE, MASE, RMSSE, rMAE, rRMSE and other measures can give you an information about the mean or median performance of forecasting methods. We have also discussed how to measure the performance […]
How confident are you? Assessing the uncertainty in forecasting
Introduction Some people think that the main idea of forecasting is in predicting the future as accurately as possible. I have bad news for them. The main idea of forecasting is in decreasing the uncertainty. Think about it: any event that we want to predict has some systematic components \(\mu_t\), which could potentially be captured […]
Are you sure you’re precise? Measuring accuracy of point forecasts
Two years ago I have written a post “Naughty APEs and the quest for the holy grail“, where I have discussed why percentage-based error measures (such as MPE, MAPE, sMAPE) are not good for the task of forecasting performance evaluation. However, it seems to me that I did not explain the topic to the full […]
useR!2019 in Toulouse, France
Salut mes amis! Today I’ve presented my smooth package at the useR!2019 conference in Toulouse, France. This is a nice conference, focused on specific solutions to specific problems. Here, people tend to present functions from their packages (not underlying models, like, for example, at ISF). On one hand, this has its own limitations, but on […]
International Symposium on Forecasting 2019
The ISF2019 took place in Thessaloniki, Greece. This time I presented a spin-off of my research on intermittent demand in retail, entitled as “What about those sweet melons? Using mixture models for demand forecasting in retail”. The idea is quite trivial and simple: use mixture distribution regressions (e.g. logistic and log-normal distributions) in order to […]
SMUG2019
I was recently invited to attend the SMUG2019 conference (SMoothie Users Group), organised by Demand Works company in New York. They asked me to present two topics: State space ARIMA for Supply Chain Forecasting, based on which I have developed a module for Smoothie a couple of years ago, Artificial Intelligence in Business, one of […]
A simple combination of univariate models
Fotios Petropoulos and I have participated last year in M4 competition. Our approach performed well, finishing as 6th in the competition. This paper in International Journal of Forecasting explains what we used in our approach and why. Here’s the abstract: This paper describes the approach that we implemented for producing the point forecasts and prediction […]