Have you heard about the recursive vs direct forecasts? There’s literature about them in the areas of both ML and statistics. What’s so special about them? Here is a short post. The term “recursive” forecasting refers to the approach, when we produce one-step-ahead forecast first, then use it to produce two-steps-ahead, three-steps-ahead, and so on. […]
Theory of forecasting
Seasonal or not?
Not every pattern that appears seasonal is genuinely seasonal. This means you don’t always require a seasonal model when you see repetitive patterns with fixed periodicity. How come? First things first, in forecasting, the term “seasonality” refers to any natural pattern repeating with some periodicity. For example, if you work in a hospital with A&E […]
Don’t forget about bias!
So far, we’ve discussed forecasts evaluation, focusing on the precision of point forecasts. However, there are many other dimensions in the evaluation that can provide useful information about your model’s performance. One of them is bias, which we’ll explore today. Introduction But before that, why should we bother with bias? Research suggests that bias is […]
What is “forecasting”?
What is “forecasting”? Many people will have a ready answer to this question, but I would argue that not many have spent enough time thinking about it. Should we spend a couple of minutes of our time today to do that? Straight to the point: my answer to the question comes to the following definition: […]
Best practice for forecasts evaluation for business
One question I received from my LinkedIn followers was how to evaluate forecast accuracy in practice. MAPE is wrong, but it is easy to use. In practice, we want something simple, informative and straightforward, but not all error measures are easy to calculate and interpret. What should we do? Here is my subjective view. Step […]
Avoid using MAPE!
Frankly speaking, I didn’t see the point in discussing MAPE when I wrote recent posts on error measures. However, I’ve received several comments and messages from data scientists and demand planners asking for clarification. So, here it is. TL;DR: Avoid using MAPE! MAPE, or Mean Absolute Percentage Error, is a still-very-popular-in-practice error measure, which is […]
Stop reporting several error measures just for the sake of them!
We continue our discussion of error measures (if you don’t mind). One other thing that you encounter in forecasting experiments is tables containing several error measures (MASE, RMSSE, MAPE, etc.). Have you seen something like this? Well, this does not make sense, and here is why. The idea of reporting several error measures comes from […]
What does “lower error measure” really mean?
“My amazing forecasting method has a lower MASE than any other method!” You’ve probably seen claims like this on social media or in papers. But have you ever thought about what it really means? Many forecasting experiments come to applying several approaches to a dataset, calculating error measures for each method per time series and […]
The first draft of “Forecasting and Analytics with ADAM”
After working on this for more than a year, I have finally prepared the first draft of my online monograph “Forecasting and Analytics with ADAM“. This is a monograph on the model that unites ETS, ARIMA and regression and introduces advanced features in univariate modelling, including: ETS in a new State Space form; ARIMA in […]
Error Measures Flow Chart
In order to help master students of Lancaster University Managemen Science department, I have developed a flow chart, that acts as a basic guide on what error measures to use in different circumstances. This is not a complete and far from perfect flow chart, and it assumes that the decision maker knows what intermittent demand […]